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The ENCODE Consortium’s efforts to annotate noncoding cis-regulatory
elements (CREs) have advanced our understanding of gene regulatory
landscapes. Pooled, noncoding CRISPR screens offer a systematic approach
toinvestigate cis-regulatory mechanisms. The ENCODE4 Functional
Characterization Centers conducted 108 screens in human cell lines,
comprising >540,000 perturbations across 24.85 megabases of the
genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we
established guidelines for screening endogenous noncoding elements with
CRISPRinterference (CRISPRi), including accurate detection of CREs that
exhibit variable, often low, transcriptional effects. Benchmarking five screen
analysis tools, we find that CASA produces the most conservative CRE calls
and is robust to artifacts of low-specificity single guide RNAs. We uncover a
subtle DNA strand bias for CRISPRi in transcribed regions with implications
for screen design and analysis. Together, we provide an accessible data
resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE
SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate
functional characterization of the noncoding genome.

The noncoding genome contains critical regulators of gene expression
and harbors >90% of trait-associated human genetic variation'"*. Major
efforts over the past decade have mapped hundreds of thousands of
noncoding candidate cis-regulatory elements (cCREs)* . Such efforts
have relied primarily on mapping sequence conservationand biochemi-
cal markers that are correlated with regulatory activity rather than
direct functional characterization. Site-specific, programmable and
highly scalable CRISPR genome and epigenome manipulation methods
have enabled massively parallel perturbation assays to identify and

characterize functional CREs. However, the overlap between CREs, ele-
ments withempirically characterized endogenous function, and cCREs,
elements nominated by biochemical markers, screens or sequence
content, is unknown.

Various CRISPR-based perturbation methods have been developed
to determine the effects of different cCREs on target gene expression
and/or downstream phenotypes® . Systematic benchmarking of
noncoding CRISPR screening methods and attempts to harmonize
theresults have been limited by low numbers of available datasets and
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inconsistent reporting. The ENCODE4 Functional Characterization
Centers have generated the largest collective dataset of endogenous
cCRE perturbation screens to date, including many loci perturbed to
saturationin K562 cells, using diverse experimental approaches. Here,
we compare noncoding CRISPR screening approaches and provide
technical suggestions and data file formats potentially generalizable
tosuchscreens. We analyze various CRISPR noncoding screens exten-
sivelyinK562 cells and other biological systems at each screening stage,
including (1) library design, (2) CRISPR perturbation selection, (3) phe-
notypingstrategy and (4) analytical methods. By assembling and jointly
analyzing this large repository of bulk CRISPR screens, we develop
suggestions for study design, analysis and validation of experiments
in these model systems and provide comprehensive benchmarking
between methodologies. We demonstrate how experimental param-
eterscanbe tuned to address technical limitations. Finally, we leverage
our combined analysis of 107 distinct CRISPR screens to interrogate
broader properties of gene regulation.

Results

The ENCODE noncoding CRISPR database reveals CRE features
We present adiverse set of >100 noncoding CRISPR screens, all of which
areavailableinthe ENCODE portal® (see Supplementary Information
Section2)and 35% of which are first published here (Fig.1aand Supple-
mentary Tables1-3). The data used in this study include three targeting
approaches: (1) unbiased tiling screens thatinclude single guide RNAs
(sgRNAs) targeting cCREs and non-cCRE regions withina specificlocus
(forexample, an entire topologically associated domain (TAD))*'*', (2)
screens that select sgRNAs targeting cCREs in a given locus>”*® and
(3) screens that target cCREs in multiple loci or across the genome™.
Although tiling screens can identify novel CREs that lack epigenetic
marks commonly associated with regulatory activity, cCRE-targeted
approaches can screen many more putative regulatory elements with
the same number of sgRNAs.

Three major CRISPR perturbation strategies were used: (1) small
genetic perturbations induced by Cas9 nuclease (Cas9)*°* and large
genomic region deletions (-2-20 kilobases (kb)) induced with paired
sgRNA®®?2 (2) epigenetic repression, with deactivated Cas9 (dCas9)
fused toaKRAB domain (CRISPRinterference (CRISPRi))* %, or (3) tran-
scriptional activation, with dCas9 fused to activator domains (CRISPR
activation (CRISPRa)**?%; Fig. 1a). All screens introduced sgRNAs into
cells at low multiplicities of infection via lentiviral transduction fol-
lowed by abulk phenotyping method®'21+1¢7182229-31 soRNAs were then
sequenced, and differences in sgRNA abundance were quantified to
measure each sgRNA’s effect on the measured phenotype.

The ENCODE CRISPR screening database contains >540,000
individual perturbations covering 24.85 megabases (Mb; 0.82%) of
the human genome (Methods). Regulatory activity was assayed for 56
genes andgrowth-related phenotypesin untreated and/or environmen-
tal perturbation contexts (for example, drug or stimulus) in 14 human
celllines, induced pluripotent stem cells (iPSCs) or iPSC-derived cell
types, collectively identifying 865 distinct regions that significantly
impacted a cellular phenotype when perturbed, hereafter referred to
as CREs (Supplementary Tables 1 and 2 and Methods). In total, 4.0%
(994,400/24,848,100) of perturbed bases displayed regulatory function,
and4.79% (2,547/53,197) of ENCODE SCREEN cCREs that were perturbed
inatleast one experiment directly overlapped a CRE. Notably, only 3.35%
(29/865) of CREs did not directly overlap open chromatinregions, defined
by DNase sequencing (DNase-seq) in 95 different celland/or tissue types,
or proximal enhancer-like signature cCREs (pELS) and distal enhancer-like
signature (pDLS) cCREs, which demarcate accessible chromatinregions
also marked by H3K27ac in at least one cell or tissue type; 99.7% of CREs
(862/865) were within £500 base pairs (bp) of these annotations

Because most experiments were performed in K562 cells, we lever-
aged 53 noncoding CRISPR screens to gaininsightsinto the character-
isticsand features that define CREs in this cellular context. Integrating

these data, we found that 230.6 kb (2.82%) of the 8.2 Mb perturbed in
greater than or equal to one experiment displayed control of gene
expression or cellular growth (n =355,356 unique perturbations;
Fig.1b, Supplementary Table 1and Methods). Across all experiments,
0.49% of ENCODE SCREEN cCREs (11,447/2,348,854) intersected per-
turbed regions, and, of this subset, 5.31% (608/11,447) overlapped a
functional hit CRE. We intersected the identified CREs (n =210; Sup-
plementary Table 4) with annotations of K562 cells and observed
the greatest overlap with ENCODE SCREEN cCREs (97.6%, 205/210;
two-sided Fisher’s exact test, P=5.90 x 10, odds ratio (OR) = 7.88) and
the greatest enrichment of H3K27ac, RNA polymerase Il (RNA Pol II) and
H3K4me3 peaks (OR =22.1,14.5 and 10.8, respectively, P<1x 107 for
each; Fig.1c and Supplementary Tables 5 and 6). Similar enrichments
were observed for ENCODE SCREEN cCREs and the union set of DNase
hypersensitive sites (DHSs) across 95 different cell and/or tissue types
(Extended Data Fig. 1a and Supplementary Table 6). Together, these
results suggest that many epigenetic and accessibility assays are largely
indicative of regulatory activity in noncoding CRISPR screens.

Wenextinterrogated which feature(s) best defined CREs identified
in CRISPR screens. The vast majority of CREsin K562 cells overlapped
either accessible chromatin regions or H3K27ac peaks (95.2%,200/210;
Extended DataFig.1b), inagreement with other cell lines (for example,
HepG2, HCT116 and MCF-7)*2, However, 24 CREs are marked by H3K27ac
peaks but donot overlap DHSs, and 18 overlap DHSs but lack H3K27ac
peaks (11.4% and 8.6%, respectively). Nine CREs lack either of these
features in K562 cells, but seven of those elements are located within
DHSsin at least one other ENCODE biosample. We observed agreater
median signal for chromatin accessibility, H3K4mel, H3K9me3, EP300,
POLR2A and CTCF at CREs (Extended Data Fig.1c and Supplementary
Table 7). Some exhibit different combinations of epigenomic features
(Extended DataFig. 1b), in agreement with previous enhancersidenti-
fied in massively parallel reporter assay studies®.

To determineifthese K562 CRE features were applicable in other
cell types, weintersected CREs identified in nine additional cell types
withassay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq), DNase-seq and H3K27ac chromatinimmuno-
precipitation with sequencing (ChIP-seq) peaksinthe corresponding
cell type (WTC11iPSCs, n= 66 CREs; GM12878, n =14 CREs; Jurkat,
n=12 CREs; A549, n=4 CREs; HCT116, n =3 CREs; MCF-7, n=3 CREs;
HepG2, n=2 CREs; NCI-H460, n=1CREs; PC-3, n=1CREs). Across all
cell types, the majority of CREs overlapped an accessible chromatin
region, H3K27ac or both features (Fig. 1e and Supplementary Table 8).
Wethenintersected the CREsin WTC11iPSCs withadditional activating
and repressive histone mark ChlP-seq peaks and observed that most
CREs overlapped regions with H3K4mel and H3K4me3 in addition to
H3K27ac, similar to the K562 CREs (Extended Data Fig. 2a). Interest-
ingly, we also observed a greater proportion of CREs that overlap
repressive histone marks (H3K9me3 and H3K27me3) in WTC11iPSCs
thanin K562 cells and CREs that are marked by both active and repres-
sive histone marks, consistent with the presence of poised and bivalent
regulatory elements in stem cells®** ¢ (Extended Data Fig. 2a,b). Collec-
tively, these results support accessible chromatin and/or H3K27ac as
defining features of CREs but indicate potential cell-type specificities.

CRISPR screenresults are reproducible in validation
experiments
To examine the reliability of the datasets, we compared the fold change
(FC) in gene expression from individual sgRNA perturbations to the
enrichment or depletion of those sgRNAs in CRISPR screens®' %>,
We found that the screen results significantly correlate with changes
inmRNA expression of a CRE’s target gene inindividual sgRNA valida-
tion experiments (R*> 0.75 for all screens; Supplementary Fig. la-d
and Supplementary Information Section 3).

To interrogate how different screening approaches compared
at the same CREs, we identified sgRNAs used multiple times across
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Fig.1| The ENCODE noncoding CRISPR screening database. a, CRISPR
noncoding strategies including (1) perturbation design strategies, (2) CRISPR
modality and perturbation strategies, (3) workflow of a standard screen,

(4) phenotyping strategies and (5) analysis approaches; SpCas9, Streptococcus
pyogenes Cas9; indels, insertions/deletions. b, Summary of the CRISPR screen
dataperformed in human cell lines/types from the April 2022 release of the
ENCODE portal. ‘Experiments’, ‘Cell lines/types’,‘Modalities’, ‘Strategy’, ‘Genes/
phenotypes’ and ‘Perturbations’ reflect all human CRISPR screens. ‘K562 CREs’
and ‘K562 CRE-gene links’ reflect results of K562-focused analysis; pgRNA, paired
sgRNA. ¢, OR for genomic annotation overlap with CRISPR screen-identified
regulatory elements (n = 210; Methods). ‘All’ refers to cell-agnostic features. K562
refers to cell-type annotations. All ORs were significant at a Pvalue of <0.01, and

values were log,, transformed for visualization (two-sided Fisher’s exact test).

d, Genome browser snapshot of the GATAI locus including H3K27ac (light gray)
and DHS signal (dark gray) in K562 cells. CRISPR screen data (signal log, (FC))

for one replicate each of CRISPRi FlowFISH (dark red), CRISPRi HCR-FlowFISH
(orange), Tycko et al.” CRISPRi growth (light blue), Fulco et al.”> CRISPRi growth
(purple), Cas9 growth (red) and CRISPRa growth (dark blue). Previously
validated GATAI CREs are labeled on top in orange. e, The number of CREs that are
significantin a CRISPR screen and overlap accessible chromatin regions, defined
by ATAC-seq and DNase-seq and/or H3K27ac ChIP-seq peaks (dark gray) or do
notoverlap those featuresin ten cell lines (A549: 4/4; GM12878:14/14; HCT116:
3/3; HepG2:2/2; Jurkat: 8/12; K562: 200/210; MCF-7:3/3; NCI-H460:1/1; PC-3:1/1;
WTCIL: 65/66).

16 screens with varied library sizes and designs at two commonly stud-
ied loci, GATAI (Fig.1d) and MYC (Extended Data Fig. 3a-c). Together,
these screens deployed >140,000 individual sgRNAs, perturbing 1,655
cCREs in GATAI and MYC flanking regions. For the 176 sgRNAs com-
monbetween all five GATAI screens (after filtering with GuideScans*

cutting frequency determination (CFD) specificity scores of 0.2 to
reduce possibly confounding off-target effects”), we observed strong
replication withinindividual screening approaches (n = 5; Pearson cor-
relation, minimum: 0.59, maximum: 0.90, mean: 0.77). For CRISPRi,
there was strong correlation between experiments (n=36; Pearson
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that the average adjusted effect of all sgRNAs in the enhancer was 10-50% or
unscaled (n =3 biological replicates).

correlation, minimum: 0.42, maximum: 0.90, mean: 0.56), while we
identified similar MYC CREs independent of phenotypic readout
(Extended DataFig.3a). By contrast, there was low correlation between
CRISPRiand Cas9 tiling at GATAI (n = 18; Pearson correlation, minimum:
0.15, maximum: 0.32, mean: 0.21; Extended Data Fig. 3d), with most
significant Cas9 sgRNAs targeting exons and most significant CRISPRi
sgRNAs targeting DHSs (Extended Data Fig. 3e,f). For CRISPRa, the
only significant sgRNAs were directly at the transcription start site
(TSS) and were shared with dCas9 alone, suggesting dCas9-mediated
steric hindrance effects (Extended Data Fig. 3f). Cas9 and dCas9
alone can map functional motifs with finer resolution*°, but some
CRISPRi-responsive enhancers are not affected by sgRNA perturbations
with these modalities (for example, the GATAI enhancers)”. CRISPRa
canbe usedin distinct contexts to find enhancers'®*° or long noncoding
RNAs* but has not yet been as widely adopted for noncoding screens,
and more data are needed to inform guidelines for its use.

Integrated CRISPR screen analysis informs design guidelines
To improve sgRNA selection for noncoding CRISPRi screens to bal-
ancescale, sensitivity and practicality, we analyzed 15 highly sensitive
CRISPRi hybridization chain reaction-fluorescence in situ hybridiza-
tion coupled with flow cytometry (CRISPRi HCR-FlowFISH) screens
designed with unbiased tiling over 100 kb at eight loci in K562 cells® '
Consistent with our findings described earlier, the significant CREs
were foundinaccessible chromatin (74%) or H3K27ac ChIP-seq peaks
(80%), with the majority having both epigenetic features (Extended
Data Fig. 4a). Thus, a combination of CRE-associated epigenetic fea-
tures (Extended Data Fig. 1b) can be used to nominate cCRE targets.
Optimizing cCRE-targeting sgRNAs is crucial for maximizing
perturbation strength without compromising practicality or scale.
We compared relative sgRNA perturbation effects within significant
enhancers and observed that sgRNAs overlapping a DHS peak induced
stronger perturbations than those overlapping H3K27ac peaks (Fig. 2a;
binomial test P < 0.001). Further, sgRNA effects across these enhancers

revealed local perturbation maximanear the enhancers’ DHS summits
(Fig. 2b and Extended Data Fig. 4b-d). Aggregating all significant
enhancerstogether, we found that sgRNA effects are strongest nearest
the DHS summit, with a near-linear decrease as a function of distance
from the summit (Fig. 2b and Extended Data Fig. 4c,d). This result held
regardless of gene expression level or length (n =20 loci; Extended
DataFig.4e,f). We compared methods for selecting sgRNA subsets and
confirmed that sgRNAs closest to the DHS summit performed better
than sgRNAs that were farther away or randomly or evenly spaced apart
(Fig. 2c). This selection method is straightforward and only requires
summit calls, standard output from peak callers such as MACS2
(ref.42). Tovalidate these findings inan orthogonal biological context,
we performed a CRISPRiscreenin primary mouse regulatory T cells by
staining and sorting for GITR expression and found a similar relation-
ship with stronger perturbation effects closer to DHS summits than
H3K27ac summits (Extended Data Fig. 5a-e).

Asenhancers canbe far fromtheir target gene, screeningall poten-
tial cCREs in this range may not be feasible’>****, When considering
allK562 screens, we found that 86% of significant CREs are within the
same TADs as their target gene and had greater effect sizes than those
indifferent TADs (Extended Data Fig. 6a-c). Predictive modeling using
the activity-by-contact (ABC) model'>* identified 43% of these CREs.
Together, chromatin contact maps and predictive modeling can be
used to prioritize target cCREsinascreen.

Next, we investigated the minimally sufficient number of sgR-
NAs needed to test a target’s significance at a given effect size. We
analyzed a GATAI FlowFISH screen’ and observed that 13 sgRNAs,
selected randomly within the eHDAC6 enhancer, are required to pro-
vide over 80% power to detect enhancers with a40% or greater effect
on gene expression (Fig. 2d). We found similar results for eGATA1
and mouse regulatory T cell Tnfrsf18 (Gitr) enhancers (Extended
DataFigs.5e and 7a,b).

sgRNA specificity and sequence filters display different
impacts between gene expression and proliferation-based screens.
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Fig. 3| Cell coverage and sequencing depth impact reliable detection of
CREs. a, Distributions of HCR-FlowFish guidewise log, (FC) effect sizes (total
of13,732 PAMs targeted) at various cell coverages separately for sgRNA targets
within (N=288) and outside known GATA1 CREs (n =13,444). Asterisks denote
significant changes in variance; *P < 0.01and **P < 2.2 x 10*® by two-sided
Levene’s test; NS, P> 0.2.b, Precision-recall curve for identifying GATAI
CRE-targeting sgRNAs using effect sizes from various cell coverages (AUPRC:
20x%=0.44,50% =0.77,100x% = 0.81,200x = 0.82; CRISPRi HCR-FlowFish).

¢, log, (FC) signals for 20x and CASA peak calls shared across all coverages and
unique to 20x. DNasel HS, DNase I hypersensitive site. d, AUPRC for identifying
GATAI CRE-targeting sgRNAs with varying sequencing depth (bootstrap

Simulated sequencing depth

Simulated sequencing depth

sampled) and cell coverages (20%, 50%,100x and 200x). Dots and error bars
indicate averages and 99% confidence intervals over ten bootstrap samples.
e f, Biological replicate reproducibility (Pearson correlation of guidewise
log, (FC)) normalized to 5,000x simulated sequencing depth (e) and guide
dropout rate (dropout defined as less than ten mapped reads) in diverse CRISPRi
screens with varying sequencing depth (bootstrap sampled; f). Dots show an
average over 100 bootstrap samples. The GATAI (circles) and MYC (triangles)
screens in human K562 cells were performed with varied readout methods
(colors). The GITR screen (rectangle) in mouse regulatory T cells (T,,) used
protein staining followed by sorting. The growth datasets included are

(1) Tycko etal.” and (2) Fulco et al.”.

Low-specificity sgRNAs often confound proliferation-based screens
due to off-target toxicity". A GuideScan aggregated CFD specificity
score of >0.2 is an effective filter, and several high CFD score sgRNAs
typically remain near the DHS peak (Extended Data Fig. 7¢)*. How-
ever, we found that significant sgRNAsin HCR-FlowFISH screens were
not significantly enriched for low-specificity sgRNAs (Extended Data
Fig.7d). Therefore, specificity filters as stringent asa GuideScan aggre-
gated CFD specificity score of >0.2 may not be needed to avoid false
positives in HCR-FlowFISH screens, in contrast to growth screens.
sgRNA spacer sequence also affects efficacy; sgRNAs containing the U6
promoter terminationsequence (TTTT’)** had reduced relative effect
sizes (Extended Data Fig. 7e; Welch’s t-test P=1.7 x10™).
Negative-control sgRNAs are necessary to calibrate the null phe-
notype and test significance. Screens use either nontargeting sgRNAs

or safe-targeting sgRNAs* at inactive loci. Previous growth screens
suggest that safe-targeting sgRNAs have stronger effects than non-
targeting sgRNAs due to DNA damage effects*. By contrast, there was
no significant difference in the average effect of nontargeting versus
safe-targeting sgRNAs in CRISPRi HCR-FlowFISH screens using 1,000
of both types of negative controls (Welch’s t-test P= 0.23; Supple-
mentary Table 9). However, safe-targeting sgRNAs had significantly
greater variance, demonstrating that they are more stringent controls
for significance testing (Extended Data Fig. 8a; safe-targeting vari-
ance =1.17 or nontargeting = 0.86, Levene’s test P < 0.001). Although
increasing the number of control sgRNAs reduces their variance,
there was no statistically significant difference in the variance of 700
safe-targeting controls compared to all 1,000, suggesting that this
may be sufficient for large-scale screens (Extended Data Fig. 8b).
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Fig. 4| CRISPR screen analysis tools identify CREs with varying selectivity.
a, sgRNA-mediated growth effects (blue), H3K27ac ChIP signal (pink) and DHS
(gray) for a CRISPRi growth screen at the GATAI locus. sgRNAs were filtered to
remove any low-specificity sgRNAs (GuideScan aggregated CFD < 0.2), which
could cause confounding off-target toxicities. Dense tracks show peak calls
using five different CRISPR screen analysis tools: CASA (orange), aggrDESeq2
(green), MAGeCK (red), CRISPR-SURF (purple) and RELICS (brown). Zoomed-in
regions show log, (FC) of individual sgRNA effects (points indicate the mean
values, and bars indicate the minimum-maximum range of observations
between n =2replicates). b, Distribution of average guide effects calculated

from two experimental replicates for sgRNAs falling within peaks identified by
different CRISPR screen analysis tools (center line, median; notch, confidence
interval of the median; box limits, first and third quartiles; whiskers, range of

all data points; violin, kernel density estimation; n =204,1,218, 715, 623 and 71
sgRNAs within CREs from left to right; Welch’s two-tailed ¢-test versus shuffled
-log,, (P)=55.2,59.3,68.8,66.6 and 8.3). ¢, CRISPRi screen peak area intersecting
(yellow) and complementing (blue) annotated chromatin features (H3K27ac,
DHS) and ENCODE SCREEN cCREs. Shading and hashing indicate which reference
annotation is used for the comparison, and total bar height reflects total genomic
area demarcated as significant by the peak caller.

Tofacilitate direct comparisons across screens, we provide acommon
set of safe-targeting sgRNAs (Supplementary Table 10)*. We note
that these safe-targeting sgRNAs were designed based on existing
Roadmap Epigenomic data and may inadvertently target active loci
inanovel cell type or sample.

Finally, sufficient numbers of sgRNAs targeting the measured
gene’s promoter should be included as positive controls to ensure that
strong perturbations can be sensitively detected and to estimate the
upper bound of measurable effect sizes*’ *’, We compared the average
effects of the ten sgRNAs closest to each FANTOM and RefGene TSS for
the HCR-FlowFISH genes, along with the four to ten sgRNAs from the
human CRISPRi Dolcetto* or hCRISPRi-v2 (ref. 48) libraries that were
included in our libraries. We found that sgRNAs from the Dolcetto or
hCRISPRi-v2libraries provided average effects similar to the maximum
average effect from perturbing all of the FANTOM and/or RefGene
TSS(s) for 12 of 14 genes (Extended Data Fig. 8c). However, for FADS2,
there were greater than twofold larger effects at some FANTOM and

RefGene TSS(s) than the published sgRNAs. Because neither Dolcetto
nor hCRISPRi-v2 was consistently best, including sgRNAs from both
published libraries increases the likelihood of having potent positive
controls, but designing ten sgRNAs nearest every TSS (where space
allows) maximizesit.

Tofacilitate sgRNA library designinaccordance with these recom-
mendations, we provide a summary of common sgRNA design tools
(Supplementary Table 11). As aresource, we used GuideScan2 (ref. 38)
to design sgRNA sets withand without filters for all human and mouse
ENCODE SCREEN® cCREs (Supplementary Fig. 2, Supplementary Table
8and Supplementary Section4). These setsinclude at least ten sgRNAs
for targeting 85% and 60% (without and with filters, respectively) of
the 249,464 human proximal enhancer-like cCREs and 86% and 70% of
the 111,218 in mice*’. Importantly, these design guidelines are based on
modeling of data produced from experiments that were conducted at
similar coverage and power, deviations from whichmay require includ-
ing additional control or targeting sgRNAs.
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Cell and sequencing coverage impact CRE and sgRNA detection
We next interrogated how varying the number of cells per sgRNA
impactsaccuracy of CRE identification by using CRISPRi HCR-FlowFISH
experiments at the GATAIlocus (Methods and Supplementary Table12).
We tested whether positive sgRNAs (those targeting the three validated
CREs; n =288) canbe distinguished from negative sgRNAs (outside the
three CREs; n=13,444) by their log, (FC) effect sizes. At low cell cover-
age (20x), effect sizes of both sets of sgRNAs had high variance, leading
to limited statistical power for distinguishing positive signals from
negative-control background (Fig. 3a). Withincreasing cell coverage,
the variance of negative sgRNAs approaches 0, whereas the variance
of positive sgRNAs stabilizes for coverages >50x. Thus, increasing cell
coverage led to higher precision and sensitivity for distinguishing posi-
tive fromnegative sgRNAs (area under precision recall curve (AUPRC):
20x =0.44,50% = 0.77,100%x = 0.81, 200x = 0.82; CRISPRi HCR-Flow-
Fish; Fig. 3b). Further, CASA peak calling with 50-200x cell coverage
resulted in accurateidentification of the known GATAI CREs, whereas
the 20x data resulted in spurious CRE calls lacking CRE-associated
epigenetic marks (Fig. 3c). Last, with cell coverage of 20%, we observed
ahighdropoutrate (sgRNAs with less than ten mapped readsinlow-or
high-expression sorting bins) of -12%, which decreases to less than 1%
with cell coverage greater than 50x (Supplementary Fig. 3). Based on
these strong-to-moderate GATAI CREs, experimental cell coverage
of at least 100x should be considered the minimum, although higher
coverage is advised when feasible. For example, coverage as high as
11,000x has been used in noncoding growth-based screens”.

We also sought to derive sequencing depth guidelines for noncod-
ing CRISPR screens. We sampled, onaverage, 5xto1,000x sequencing
reads per sgRNA and found that with 250x sequencing depth or higher,
accuracy of HCR-FlowFISH screens for GATAI CREs is limited by cell
coverage, such that further increases in sequencing depth only margin-
allyimprovesaccuracy (Fig. 3d). We repeated the analysisin five other
CRISPRscreens, including growth screens performed at GATAIand MYC
loci, and found that 250x sequencing depth was areasonable minimum
for CRE identification accuracy. Further, we observed saturation of
biological replicate correlation of guide effects and of guide dropout
rate starting at 250x sequencing depth (replicate normalized log, (FC)
R>0.9 and average dropout rate of <2% for all screens; Fig. 3e,f and
Extended DataFig.9).Inaddition, we assessed normalization strategies
and found that mean-normalized effect size calculations were more
reproducible between biological replicates than linear-transformed
effects. This finding was consistent for GATAI screens with varied phe-
notyping strategies (Supplementary Fig. 4a) and for HCR-FlowFISH
screens across 20 loci (Supplementary Fig. 4b).

CASA provides more conservative CRE calls than other
methods

Noncoding CRISPR screens can produce noisy results when sgRNAs
generate variable effectsin agenomicinterval (Fig. 4a). Multiple analy-
sisapproaches, or ‘peak callers’, aggregate individual sgRNA measure-
ments from densetiling screens to nominate CREs. We investigated the
use of five peak callers: element-level aggregation of DESeq2 (aggrD-
ESeq2), CASA, CRISPR-SURF, MAGeCK and RELICS®*** (Supplementary
Table 13). We benchmarked the identification of GATAI CREs using a
CRISPRi tiling growth screen, excluding low-specificity sgRNAs (Fig. 4).
Although a comprehensive, fully validated ground truth CRE set is
lacking, these CREs have been rigorously epigenetically profiled and
studied across multiple functional characterization assays™ %",

All peak callers nominated the promoter for GATAI (Fig. 4a) as a
CRE. Additionally, CREs called by all five methods corresponded with
significantly higher sgRNA effects than shuffled control elements
(Fig.4b; P<5x107%, Welch’s two-tailed t-test). However, the total num-
ber of CREs varied across each method, with aggrDESeq2 identifying
the most (n =21) and CASA and RELICS identifying the least (n=3).
Meanwhile, peaks called by CASA, CRISPR-SURF and MaGeCK had the

greatest proportional overlap with annotated ENCODE SCREEN cCREs,
H3K27ac peaks and DHSs (Fig. 4c). aggrDESeq2 CREs yielded the largest
total overlap but also identified agreater proportion of CREs outside of
annotations. We found that canonical GATAI elements are most similar
to CASA and RELICS CREs and least similar to aggrDESeq2 CREs (Sup-
plementary Fig. 5a). Finally, we inspected the intersection of GATAI CRE
callsfrom eachmethod and found that CASA was the only peak calling
method that lacked unique GATA1 CRE calls (Supplementary Fig. 5b).
To determine each method’s susceptibility to potential sgRNA
off-target effects, we reanalyzed the GATAI screen with low-specificity
sgRNAsincluded (Methods and Supplementary Fig. 6a-d). The total num-
ber of CREs called by aggrDESeq2 increased by more than threefold (21
CREsversus 68 CREs). The total number of CREs called by CRISPR-SURF,
MAGeCK and RELICS increased by 12, 4 and 2, respectively, whereas the
number of CREs identified by CASA did not change. After removing the
single most significant sgRNA per bin, the total number of aggrDESeq2
peakcalls decreased to1l, indicating that the methodis sensitive to poten-
tial outliers. Collectively, these results support CASA as the preferred
method for CRE calling. To facilitate future analytical development and
benchmarking, we propose processed data file formats that capture
critical experimental parameters and include sgRNA-level and CRE-level
effect quantification (Supplementary Information Sections 5and 6).

Perturbation dynamics affect screen sensitivity

Our integrated dataset provides an opportunity to investigate pos-
sible interactions between perturbation timing, sgRNA effect sizes
and phenotyping strategy. Conceptually, a higher-effect-size sgRNA
would be expected to display detectable phenotypic impacts sooner
than a weaker-effect-size sgRNA, but there is no clear consensus on if
theinitial plasmid pool of sgRNAs or an early time point after lentiviral
deliveryisthebestinitial sample comparator to identify sgRNA effects.
We leveraged multiple GATAI CRISPRi growth screen time points and
sequenced sgRNAs in the predelivery plasmid pool, at 7 days after
lentiviral guide delivery to cells (T7) and at an end point after 21 days
(T21; Fig. 5a). Comparing plasmid to T7, we observed asignificant CRE at
the promoter but did not identify the distal eGATAl and eHDAC6 CREs
(Fig.5b). However, both distal CREs were identified in the plasmid-T21
or T7-T21 comparison (Fig.5b), and the peak at the promoter widened
by ~1kb withincreasing sgRNA effect sizes.

Although the sgRNA effect sizes from these two time point com-
parisons are correlated (R? = 0.71), asubset of sgRNAs (<1%) displayed
time point-dependent effects (Fig. 5c). These sgRNAs are strong
(log, (FC) >3)inaplasmid-T21comparisonbut have reduced effect sizes
inaT7-T21comparison. These sgRNAs largely target the GATAITSS.One
ofthese sgRNAs (sgTSS-2) was individually validated to reduce GATA1
expression and growth (Supplementary Fig. 1d and Supplementary
Table 14). Another validated sgRNA (sgTSS-1, Supplementary Fig. 1d)
displayed the third strongest effect in the plasmid-T21 comparison
(log, (FC) =5.4) and the strongest effect in the plasmid-T7 comparison
(log, (FC) =5.7) but dropped out by T7 and was not observed in the
T7-T21 comparison and thus became a false negative. Together, this
suggeststhat these rapidly depleted sgRNAs can cause bonafide growth
phenotypes, and the strongest hits may be most affected by reduced
sensitivity in the T7-T21 comparison.

We reasoned that screens based on growth may be more sen-
sitive to perturbation dynamics than screens that directly read out
transcriptional changes. Indeed, an HCR-FlowFISH screen of GATAI,
in which sgRNA abundances were compared before and 2 days after
CRISPRi induction by doxycycline, identified both the promoter and
thetwo distal CREs (Fig. 1d). This screen format was not susceptible to
reduced power to detect the strongest TSS-targeting sgRNAs. Together,
we suggest comparisons to initial sgRNA abundance before starting
phenotypic selection, for example, by measuring sgRNA abundance
intheinput plasmid library or in cells before CRISPRi expressioninan
inducible system.
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Fig. 5| Perturbation dynamics impact screen sensitivity and resolution.

a, Timeline of CRISPRi growth screen with quantified sgRNA abundances of the
sgRNA plasmid library before delivery and at T7 and T21 after sgRNA lentiviral
delivery. b, CRISPRi growth screen at the GATAI locus shown with different time
point comparisons (top, plasmid versus T7; middle, T7 versus T21; bottom,
plasmid versus T21) used to compute sgRNA effect sizes. Each dot shows the
average log, (FC) effect size of two biological replicates for an sgRNA, and the
error bar shows the range. CASA peak calls for significant growth effects are

shown. The GATAI-regulating CREs eGATA1, GATAI TSS and eHDAC6 are labeled
with their corresponding CASA peak calls. ¢, Scatter plot of sgRNA effect sizes
asdetermined by different time point comparisons. Each dot shows the average
of two biological replicates for an sgRNA. Black or colored dots are sgRNAs
targeting the TSS or enhancers, respectively. The sgRNAs along the diagonal
line of points, including sgTSS-1, drop out by T7 and thus are absent from the T7
versus T21 comparison. sgRNAs selected for validation assays are labeled.

CRISPRi effectsin the gene body are strand specific

Most CRISPR screens model and analyze sgRNA effects without con-
sidering the potential impact of which DNA strand is targeted. Ana-
lyzing a CRISPRi growth screen tiling GATAI, we surprisingly found
that sgRNAs targeting the coding strand affected growth, whereas
template-targeting sgRNAs did not (P <1x107%; Fig. 6a). This differ-
ence was only observed in the GATAI gene body, perhaps related to
RNA Pol Il binding the template strand during gene transcription. We
again observed significantly greater effects for sgRNAs targeting the
codingstrand withinthe genebodyin the FADS1and FADS2HCR-Flow-
FISH CRISPRitilingscreens (P <1x107;Fig. 6b,c). These coding strand
effects were uniform throughout the transcribed gene body and ended
atthetranscriptionendsite (TES; Extended DataFig.10a). We observed
muchweaker effects from the same library of sgRNAs targeting either
strand inthe gene body when using dCas9 alone (Fig. 6a) or when using
CRISPRa (Fig. 6d and Extended Data Fig. 10b,c), suggesting that this
phenomenon depends on the KRAB repressor (Fig. 6e). We propose
amodel wherein dCas9 binding could be reduced on the template
strand due to competition with Pol lI-mediated transcription, render-
ing KRAB ineffective. By contrast, when targeting the coding strand,
KRAB can be effective.

To determine if this effect was present more generally, we
expanded our comparison to 17 additional experiments (Methods).
In all 17 CRISPRi screens, the average effect sizes of sgRNAs targeting
coding strands within gene bodies were more than twofold higher
thanthose targeting the template strands (Fig. 6d). The overall strand
bias was not strongly associated with gene length or expression level

measured by RNA sequencing (Extended Data Fig.10d,e). In contrast
to this strand bias in the gene body, there was no difference between
coding and template strand sgRNA effects for all 17 corresponding
promoters (Extended Data Fig. 10f).

Many enhancers reside within gene bodies®, motivating us to
consider if these CRISPRi effects throughout gene bodies could be
distinguished from effects at intragenic enhancers. FADS2 contains
intragenic enhancers, as determined by concordant signals from CRIS-
PRiHCR-FlowFISH, DHS and H3K27ac ChIP-seq (Fig. 6b).In contrast to
elsewhere in the gene body (and more similarly to intergenic enhanc-
ers), sgRNAs targeting both strands in these two enhancers had a sig-
nificant effect on FADS2 expression, although sgRNAs targeting the
coding strand had a moderately greater effect than those targeting
the template strand (P=0.034 and 0.018, respectively; Fig. 6b and
Extended Data Fig.10g). This coding strand bias was present at some,
butnotall, intragenic CREs (for example, NMUand CAPRINI; Extended
DataFig.10h,i). Theseresults demonstrate the necessity of considering
strand to reliably identify intragenic CREs with CRISPRIi.

Discussion

CRISPR-based methods to examine CREs are animperative step toward
understanding the mechanisms that govern gene regulation and how
disruption of these CREs contribute to disease. However, there are no
common controls nor consensus on experimental design parameters,
execution and analysis methods. Thislack of asystematic comparison of
screen sensitivity and specificity made evidenced-based sgRNA library
design difficult, especially for modest-effect-size CREs or single-cell
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Fig. 6 | CRISPRi effects in the gene body are strand specific. a, Strand-specific
CRISPRi growth screen affects tiling GATA1. CRISPRi and dCas9 tracks show

the average of two biological replicates comparing day 21 to plasmid (N = 2,541
coding strand- and 2,263 template strand-targeting sgRNAs). b, Strand-specific
CRISPRi HCR-FlowFish screen affects tiling FADSI and FADS2. CRISPRi tracks
show the average of two biological replicates comparing high- and low-
expression bins for the target gene (n = 4,609 and 4,942 sgRNAs per strand). c,
Distributions of sgRNA effects (average of two biological screen replicates) in the
genebody and at the promoter (within 2 kb upstream of the TSS), when sgRNAs
are categorized by target strand in the (top) GATAI CRISPRi growth screen

(n=2,026,1,731,34,27,100 and 77 sgRNAs from left to right) and the (bottom)
FADS1HCR-FlowFishscreen (n =3,121, 3,249, 90, 69, 520 and 702 sgRNAs). Boxes
show the quartiles with aline at the median, vertical lines extend to 1.5 times
theinterquartile range, and dots show outliers. Asterisks denote significance
with P<1x10 by two-sided t-test. d, Strand specificity across screens tiling 17
loci for sgRNAs targeting the gene body. Each point is the average effect of all
sgRNAs from a screen targeting that region averaged across two screen biological
replicates, with color indicating the phenotypic readout and shape indicating the
type of CRISPR perturbation. e, Proposed model of gene body strand bias.

‘omics readouts*®. To address these limitations, we performed a com-
prehensive analysis of the ENCODE noncoding CRISPR screen datasets
and proposed guidelines for screenimplementation, standardized file
formats and processed data expectations.

Our finding that the strongest enhancer-perturbing CRISPRi sgR-
NAs are nearest to distal CRE DHS summitsis animportant design crite-
ria, potentially explained by accessibility improving CRISPRi efficiency,
higher transcription factor motif density and/or more optimal sgRNA
target sequences. Transcription-based screens are less susceptible to
off-target effects than growth screens, potentially due to off-target
sitesimpacting cellular proliferation more often than asingle measured
gene'*’. Wereport a CRISPRi strand bias specific to gene bodies that is
particularly evidentin non-CRE regions of gene bodies, similar to previ-
ous findings with Cas9 nuclease®’. Whereas template strand-targeting
sgRNAs with Cas9 show improvements for genome editing, our results
suggest that CRISPRiis stronger with coding strand-targeting sgRNAs

in the gene body and a need for strand-aware analysis to distinguish
intragenic CREs from the subtle effects of CRISPRi throughout the
gene body. After CRISPRi targeting, deposition of repressive H3K9me3
and diminished accessibility have been observed at the target CRE™**,
but such characterization is lacking for the vast majority of known
CRISPRi-sensitive CREs.

We compared several peak callers for de novo CRE discovery in
tiling screens and found that, although all identify positive-control
CREs, CASA maintained both sensitivity and precision with fewer false
positives from off-target noise. In sparse cCRE-targeting and cCRE/
locus-tiling screens, including biological replicates and increasing
sgRNA number were critical for detecting weak elements and improv-
ing power. We advise considering the thresholds described in this study
for experimental coverage and sgRNA numbers as minimums and
empirically evaluating power in other experimental systems, includ-
ing single-cell ‘omics readouts that may suffer from data sparsity*s.
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Likewise, we expect that future analytical packages will incorporate
replication, strand bias and sgRNA efficacy toimprove CRE detection.

An important limitation is that these experiments covered only
16 biosamples, with a strong emphasis on K562 cells due to data avail-
ability. Although we did validate key findings in mouse primary regula-
tory T cells, more systematic screening across phenotypes, cell types
and genomic regions is needed to capture the range of cis-regulatory
mechanisms. Guidelines for orthogonal CRISPR modalities (for exam-
ple, CRISPRa) may differ from CRISPRi (as they differ at promoters*®)
and may be biased by library designs, phenotypic readouts, specific
genomic loci perturbed and analysis methods used in these experi-
ments. Building alarger, more diverse collection of CREs willimprove
guidelines for selecting sgRNAs and will empower refinement and
benchmarking of methodological guidelines and analysis techniques.
Although others have found limited evidence for regulatory function
outside known K562 cell DHSs or H3K27ac sites*, previous studies have
alsoidentified putative repressor elements via CRISPRi perturbations,
including aREST-drivenrepressor of FADS3 (ref. 9) as well as evidence
of silencer elements using reporter assays®>.

Optimal experimental and analytical parameters are needed to
increase the scale and/or sensitivity of CRISPR screens, especially
as they are increasingly applied with multiplexed readouts and in
single-cell schemas®*. Recommendations based on bulk CRISPR
screens, such as prioritizing sgRNAs targeting the DHS peak, should
apply tosingle-cell screens, but minimum sgRNA number per cCRE and
optimal cell and/or sequencing coverages will likely differ. Currently,
the most extensive published single-cell dataset uses two sgRNAs
per target, precluding an in-depth analysis of optimal sgRNA density
per cCRE*. Based on a diverse set of CRISPR screens in the ENCODE
database, along with predesigned sgRNAs for cCREs, this work will
accelerate the functional characterization of regulatory elements
across the genome and make noncoding CRISPR screening methods
accessible to the broader community.
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Methods

Cell lines and cell culture

K562 cells with adoxycycline-inducible CRISPRi blue fluorescent pro-
tein (BFP) were agift from the Lander lab (Broad Institute, Cambridge,
MA, USA) and were identical to those used in a previous study’. In that
study, the cells were generated by (1) transducing K562 cells with a
construct expressing reverse tetracycline transactivator linked by IRES
to a neomycin resistance cassette expressed from an EF1a promoter
(ClonTech) and selecting with 200 pg ml™ G418 (Thermo Fisher) and
(2) transducing these reverse tetracycline transactivator-expressing
K562 cells with a KRAB-dCas9 construct. Cells expressing BFP were
selected by fluorescence-activated cell sorting. Cells were grown in
RPMI-1640 GlutaMAX (Gibco) with 10% heat-inactivated fetal bovine
serum (Gibco).

GATAIscreen withvaried cell coverage

A previously described noncoding GATAI lentiviral library was used’.
CRISPRiBFP wasinduced for 24 hwithafinal concentration of 1 pg ml™!
doxycycline (VWR). Active CRISPRi was checked by confirming that
doxycycline-induced BFP signal was observed in >90% of cells by flow
cytometry (Sony, MA900). Cells were grown for 2 weeks after trans-
fection, following the HCR-FlowFISH protocol exactly as previously
described’. High- and low-expression bins (top and bottom, 10% each)
were also gated following the previous HCR-FlowFISH protocol’. Cells
were sorted at multiple folds of library size (25x,50x,100x and 200x).

The ENCODE CRISPR Screen Database and overlap with cCREs
Individual sgRNAs were aggregated across fully released experiments
with sgRNA-level and/or element-level quantification files performed
in human cell lines using the November 2022 data release exclud-
ing single-cell gene expression readouts (Supplementary Table 1;
‘included_in_all_meta’, n = 75). Note that three experiments were
removed in the August 2022 data release. These experiments have
beenrereleased as of November 2022 but were excluded from all calcu-
lations. The coordinates of each sgRNA were adjusted based on the type
of perturbationused inthe corresponding experiment (Cas9 cutting:
+10 bp of PAM, dCas9-KRAB: +150 bp of PAM) and lifted from hgl9 to
hg38 genome builds when necessary. For 15 sgRNAs that did not have
strand informationin the associated elementReference or guideQuant
files, the protospacer sequences were manually aligned to the hg19
genome build to retrieve the strand information before adjusting for
the perturbation modality. For paired sgRNA experiments, we consid-
ered eachgRNA in agiven pair as a unique perturbation and adjusted
the coordinates as described above. The total number of perturbations
was defined as the number of unique coordinate combinations after
adjusting for the perturbation modality. These perturbation regions
werethenintersected (bedtoolsintersect) with100-bp tiled bins across
each chromosome, followed by merging of overlapping bins (bedtools
merge -d 1), and the percentage of the human genome perturbed was
calculated by dividing the sum of bases within the tiled bins by the
effective genome size (3,088,269,832 bp). The significant CREs from
each experiment (defined by the contributing lab) were intersected
with the same 100-bp tiled bins and similarly merged to generate the
final CRE set (Supplementary Table 2).

K562 cell screen integrated analysis. Individual sgRNAs were
aggregated acrossreleased experiments performedin K562 cells with
FlowFISH-based readouts with sgRNA-level and/or element-level quan-
tification files (November 2022 datarelease, excluding single-cell gene
expression readouts; Supplementary Table1, ‘included_in_k562_meta’).
The coordinates of each sgRNA were adjusted based on the type of
perturbation used in the corresponding experiment as described
above and were lifted from hg19 to hg38 genome builds when neces-
sary. These perturbation regions and the CREs from each experiment
(defined by the contributing lab) were then intersected with 100-bp

tiled bins as described above to generate the perturbed and CRE sets,
respectively. The CRE coordinates and feature overlap are provided in
Supplementary Table 5.

The genomic and epigenomic annotation files used for enrich-
ment testing and signal comparison are provided in Supplementary
Table 4. The perturbed regions and CREs were intersected with the
significant peak calls or predicted ENCODE SCREEN cCREs (‘features’).
Atwo-sided Fisher’s exact test was performed comparing the number of
features overlapping a CRE to the total number of features perturbed.
The results are reported in Supplementary Table 6. The UpSet plot
comparing CRE overlap with features was generated using the R pack-
age ‘UpSetR’. Tocompare the signal of each feature between perturbed
regions and CREs, bigWig files were converted to bedgraph format
using the University of California Santa Cruz utility ‘bigWigToBed-
Graph’. Next, the perturbed regions and CREs were intersected with
the bedgraph files containing FC over background signal (‘signal’).
Signal values were then normalized by dividing by the element size,
and a two-sided Wilcoxon test was performed comparing the median
signal for each feature between perturbed, not significant regions and
CREs. Two-sided Wilcoxon test and Student’s ¢-test results and median,
mean and standard deviation of normalized signal values are reported
inSupplementary Table 7.

CRE features in additional cell types. We retrieved the CREs (defined
by the contributing lab) from the ‘elementQuantification’ files for each
experiment and lifted hg19 to hg38 coordinates when necessary. The
sources for the peak calls for each ‘feature’ are listed in Supplementary
Table 18. The CREs were intersected with peak calls corresponding to
agiven feature. For WTC11iPSCs, the UpSet plot comparing the CRE
overlap to accessible chromatin regions and histone mark ChlP-seq
was generated using the R package UpSetR. The count and propor-
tion of CREs overlapping each feature in all ten cell lines analyzed are
reported in Supplementary Table 8.

CRISPR screen comparisons with individual sgRNA validations.
sgRNA abundance and element activity values from CRISPR screens
and results from experimental validations were obtained from sup-
plemental materials from each of the cited publications. Two-sided
Pearson correlation values and associated P values between the vali-
dation assays and screen results were calculated using the ‘stat_cor’
function from the R package ‘ggpubr’.

Cross-screen analysis at GATAI and MYC. hg38 PAM coordinates
were used to uniformly analyze and compare the five CRISPR screens
from various labs. For screens with hgl9 coordinates, their proto-
spacer coordinates were first mapped to hg38 using bowtiel and the
‘“n-best’ options. The hg38 PAM coordinates for each screen were then
extracted by taking the 3 bp downstream of each protospacer, which
were confirmed to contain the expected NGG sequence. For the GATAI
locus, 250 such PAM coordinates were found to be shared across the
five screens, and these common PAM coordinates were filtered out
for their sgRNA GuideScan target specificity (>0.2), leading to 176
PAM coordinates that were used for pairwise effect size comparison of
the five screens. Effect sizes were computed using mean-normalized
log, (FC) (Eq.1providedin Cell coverage/sorting depth titration experi-
ments for HCR-FlowFISH). To compare the effects of CRISPR-Cas9
and CRISPRi at exons and DHSs, we obtained subsets of sgRNAs with
significantly high log, (FC) effect sizes (Z-score P < 0.001). We then
extracted significant sgRNAs that target exons or K562 cell DHSs by
overlapping their PAM coordinates with Ensembl-annotated exons
and K562 cell DHSs obtained by extending K562 cell DHS narrow peaks
(ENCFF899KXH) by 500 bp in both directions from their centers. For
CRE annotations in the Cas9 versus CRISPRi comparison of effect
sizes, sgRNAs were defined as targeting eGATAL if their start position
waswithin48641136 and 48641797, eHDAC6 if their start position was
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within 48658755 and 48659455 or GATAI TSS if their start position was
within 48644481 and 48645481.

ABC model CRE target predictions. We downloaded the ABC predic-
tions for K562 cells®* and evaluated the percentage of significant CREs
identified in the HCR-FlowFISH screens that regulate the target gene pre-
dicted by ABC.ABC-predicted CRE-gene links were based on average HiC
usingan ABCscorethreshold of 0.015for significant predicted links. CREs
fromthe screens wereintersected with the cCRE ranges provided by the
K562 cell ABC predictions without any additional coordinate expansions.

Evaluating sgRNA effects in DHS or H3K27ac peaks. Significant,
non-TSS-overlapping distal enhancer elements identified in any of
the HCR-FlowFish screens that intersect both a DHS and H3K27ac
peak were first selected. For each enhancer element, we calculated
the mean effect of all sgRNAs within its intersecting DHS or H3K27ac
peak region. The sgRNA intersections used the sgRNA’s 3-base PAM
coordinate window.

Evaluating sgRNA effects as a function of distance from the DHS
summit. Significant, non-TSS-overlapping distal enhancer elements
identified in any of the HCR-FlowFish screens that intersect both a DHS
and H3K27ac peak were selected. We then selected all sgRNAs within
2 kbofthe enhancer element’s strongest intersecting DHS summit and
normalized their effect sizes to the mean of all sgRNAs intersecting that
DHS peak (using the sgRNA’s 3-base PAM coordinate window).

Toproduce plots of DNase-seq, H3K27ac ChIP-seq and normalized
sgRNA effectsrelative to the DHS peaks, we took the sgRNA coordinates
around significant, nonpromoter enhancers and expanded themeach
by +150 bp to conservatively approximate KRAB’s repressive window
and assigned each base position that sgRNA’s normalized effect size.
If multiple expanded sgRNA windows overlap, then their effects were
averaged per base position. These data were converted into a bigWig
file, and we used deepTools to plot the distance-dependent sgRNA
effects along with DNase-seq and H3K27ac ChIP-seq signal tracks.
Because of the noise presentin the GITR screen, only significant, non-
promoter enhancers with an effect size of <-1 were included in the
sgRNA effect analyses.

Evaluating significant CREs as a function of location within the
same TAD as their target gene. Significant CREs in K562 cell screens
with adjusted P values of <0.05 that reside inside a K562 cell HiC TAD
(ENCFF173VD)) were included for analysis. Sixty-five significant CREs
werenotina TAD and were excluded. Foreach CRE’s target gene, it was
determinedifthe consensus RefSeq promoter 1-kb window around the
TSSwasinthe same TAD as the CRE.

Effect size-dependent sgRNA number per element power analy-
sis. For the guide downsampling analysis, we took guide-level effect
sizes from the CRISPRi FlowFISH screens targeting the GATAI locus
and averaged the effect sizes from two biological replicates. We then
took the sgRNAs targeting the eGATAl enhancer and rescaled their
effects so that the average of all 37 sgRNAs was a 0-50% perturba-
tion, in steps of 10%, of GATAI expression. For each number n of sgR-
NAs, we sampled n sgRNAs from the scaled distribution, computed a
Welch’st-test Pvalue (equal_var = False, dof = 1) against all nontargeting
negative-control sgRNAs, performed a Benjamini-Hochberg correc-
tionwith allelements tested in the screen and tested for false discovery
rate (FDR) < 0.05. Werepeated this procedure 500 times for each (effect
size, guide number) pair and computed power as the fraction of times
we correctly rejected the null hypothesis.

Off-target sgRNA enrichment analysis. For each respective screen,
we selected sgRNAs located at least 1 kb away from any DHS peak,
regardless of significance, or significant element. We used GuideScan

toobtain sgRNA aggregated CFD scores, asummary score of off-target
specificity based on the weighted likelihood of off-target activity across
a full list of potential off-target sites and separated sgRNAs into low
specificity (CFD < 0.2) or high specificity (CFD > 0.2). We then calcu-
lated the proportion of sgRNAs in each specificity category that had
effect sizes more than two times the standard deviation of negative
controls from the mean of the negative controls and performed a
Fisher’s exact test to derive a Pvalue for each OR.

Safe versus nontargeting negative-control variance statistical
analysis. For Extended Data Fig. 8, negative-control sgRNAs were
subsampled 1,000 times eachinincreasing increments of ten sgRNAs.
For each subsample, we performed aLevene’s test against the full set
of 1,000 of the respective type of negative-control sgRNAs. We then
calculated the percentage of times that the result of the Levene’s test
was significant (P < 0.05; thatis, the number of times variance between
the subset and the whole set was statistically different) from the 1,000
subsamples for each increment. This percentage is the empirical
Pvalue, such that the black threshold line of P=0.05 means that out
of 1,000 subsamples, only 50 had significantly different variances
compared to the variance of the full set of that respective type of
negative-control sgRNA.

Promoter-targeting ‘positive-control’ sgRNA selection analysis. For
Extended Data Fig. 8c, we selected all TSSs provided by the FANTOMS
database that passed a relaxed Timo TSS classification score of 0.14
for the genes measured by HCR-FlowFISH. We calculated the average
effects of the ten closest sgRNAs to each TSS position. Where a TSS
window was provided, we used the first transcribed base position to
calculate absolute sgRNA distances. To compare these sgRNAs against
those provided by genome-wide CRISPRi libraries (Broad Dolcetto*
and hCRISPRi-v2 (ref. 48)), we selected the sgRNAs whose spacers
matched those tested in the HCR-FlowFISH screening libraries; the
sgRNAs from hCRISPRi-v2 follow a G + 19 base spacer convention, sothe
5’-most base from the HCR-FlowFISH spacer sequences was trimmed
to facilitate spacer sequence matching. Because these libraries often
provided lower scores than the optimal TSS, we aimed to provide a
heuristic method of selecting TSS-targeting sgRNAs by selecting the
TSSwith the greatest Pol Il ChIP-seq signal (TSS provided by RefGene,
total Pol Il ChIP-seq signal was calculated inawindow +500 bp around
the TSS) and picking the ten nearest sgRNAs.

Cell coverage/sorting depth titration experiments for HCR-
FlowFISH
HCR-FlowFISH experiments at GATAI were performed using guide
libraries, K562 cell lines, transcript detection, sorting and sequencing
strategies, as previously described’, and following guidelines suggested
here (Supplementary Information Section 7). To evaluate the effects of
sampling cell numbers at different levels of complexity, defined as the
number of observations per number of sgRNAs used, we performed two
replicates of the GATAI library and partitioned theminto different sort-
ing depths. The same library was sorted into 20x%, 50%,100x and 200x
the guide library size. To assess the impact of sequencing complexity,
eachsorting strategy was sequenced at adepth of more than2,000x.
Effect size of each sgRNA was computed using Eq. 1 to under-
weight sgRNAs with low read counts by normalizing read counts by
their mean:

Mean — normalized log, (FC);

= log, (1 + [A;/mean(4)]) /(1 + [B;/mean(B)]))

@

Linear — transformed log, (FC);

= log, ([(1 + Ay)/sum(A)]/[(1 + B;)/sum(B)])

2)
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where A and Bare eachvectors encoding the number of reads for each
guide in low- and high-sort bins, respectively. Target coordinates for
each sgRNA were determined by their target PAM coordinates. Coor-
dinates for the GATAI CREs were obtained using HCR-FlowFISH CASA
CRE annotation (ENCFF413WYU).

Bootstrap sampling analysis for simulating CRISPR screens
performed at various sequencing depths

Bootstrap sampling analysis for sequencing depth was performed
using ENCODE standard guide quantification files, which record the
number of sequencing reads that map to each sgRNA sequence in a
given library. Each CRISPR screen comes with two guide quantifica-
tion files. For sorting-based screen approaches (for example, Flow-
FISH), one file quantifies the number of mapped sequencing reads in
low-expression sorted bins (labeled ‘A’), whereas the other file quanti-
fiesthosein high-expressionsorted bins (labeled ‘B’). For growth-based
screenapproaches, we quantify using samples collected froman earlier
time point (‘A’) and a later time point (‘B’). To simulate an experiment
with sequencing depth of d, we sampled with replacement total NV x d
number of readsindependently from each Aand B, where Nis the num-
ber of distinct sgRNAsNinxda simulate an experiment with sequencing
depth d, we sampled with replacement total N x d number of reads
independently from each A and B, where N is the number of distinct
sgRNAsinalibrary.

For the CRISPR screens used for the bioreplicate reproducibility
anddropoutanalyses, reads were sampled independently for each of the
twobioreplicates (A1,A2, Bl and B2). sgRNAs that had 0 mappedreads
inany one of Al, B1, A2 and B2 were excluded from the analyses. At each
value of d, 100 independent bootstrap samples were generated to be
used for dropout and bioreplicate reproducibility analyses (Fig. 3f,g).

For the dropout simulation analysis, we defined dropout sgRNAs as
those thatresultedinless than ten sampled reads from either Ag,ypieq OF
B.amplea- FOT bioreplicate reproducibility analysis, we computed Pearson
correlations oflog (FC) effect sizes (10g, [(1+ Agmpiea)/ (1 + Bsymprea)]) from
every pair of bootstrap samples, one coming frombioreplicate1and the
other coming from bioreplicate 2.

Peak caller comparisons

aggrDESeq2. For each experiment, read counts of individual sgRNAs
for theinitial and final time points were obtained from the guideQuant
files. Differential abundance testing was performed using the DESeq2
package with default parameters, with contrasts defined such that the
average log, (FC) values of sgRNAs more abundant in the final time point
or high-expressing bin have positive values. Next,100-bp bins were tiled
across chromosomes containing perturbations. Coordinates for indi-
vidual sgRNAs were adjusted based on the perturbation modality (Cas9
cutting: £10 bp of PAM; dCas9: 10 bp of PAM; dCas9-KRAB: 150 bp of
PAM) andintersected with the bins. For every 100-bp bin, asignificance
value was calculated using Fisher’s method for aggregating P values
withthe unadjusted DESeq2 Pvalues asinput. The aggregated Pvalues
were then FDR adjusted. Significant bins were defined as FDR < 0.01.
Note that sgRNAs that intersect more than one bin contribute to the
calculations for all overlapping bins. This was repeated without filtering
out sgRNAs with GuideScan specificity scores of <0.2. To determine if
the method was sensitive to outliers, we removed the most significant
sgRNA per bin and recalculated the bin significance and effect size. For
the Gitrlocus screen, the above process was repeated.

CASA. sgRNA guideQuant files were parsed to provide genomic map-
ping coordinates of the protospacer sequence and raw guide counts
per experimental condition in the CASA input format. We ran a con-
tainerized deployment (https://hub.docker.com/r/sjgosai/casa-kit;
version 0.2.3) on the Google Cloud Platform using a wrapper script
providedin the CASA GitHub repository (https://github.com/sjgosai/
casa). CASAwas runusingaslidingwindow of 100 bp inwidth and step

size and a ROPE threshold of 0.693 (that is, the default settings). Asin
previous work’, peaks that were supported by at least ten sgRNAs and
were shared between two bioreplicates were reported.

CRISPR-SURF. sgRNA guideQuant files were parsed according to the
input format required for CRISPR-SURF (in particular, converting PAM
coordinates to protospacer coordinates). SURF_count was then run
with the options -nuclease cas9 -pert crispri to produce an input file
for deconvolution. SURF_deconvolution was run using the -pert crispri
option, and the resulting negative_significant_regions.bed was used
toidentify positive regulators of expression with FDR < 0.05. CRISPR_
SURF was run using the provided Docker container using Singularity.

MAGeCK. sgRNA guideQuant files and coordinate expansion
were performed similar to as described above. One hundred-base
pair bins were created by taking the first most upstream coordi-
nate position among all sgRNAs in the respective screening library
and creating 100-bp bins until reaching the most downstream
sgRNA coordinate position. Expanded coordinate sgRNAs were
then intersected with the bins. MAGeCK was run using the default
parameters (-norm-method = median -sort-criteria = negative -
remove-zero = none -gene-Ifc-method = median), and only the sig-
nificance values corresponding to the expected effect size direction
for each screen (negative for the growth screens and positive for the
FlowFISH screens) were used to calculate significance, which was
calculated similar to as described above.

RELICS. sgRNA guideQuant files were prepared to provide genomic
coordinates and raw counts of each sgRNA in the standard input format
for RELICS. The sgRNAs overlapping promoter regions and exons of
each target gene were labeled as functional sequences for CRISPRi
screens and CRISPR-Cas9 screens, respectively. CRISPR systems used
for each screen were specified for RELICS. The functional sequences
were thenidentified for each screen using the default settings for REL-
ICS v.2.0 (min_FS_nr:30, glmm_negativeTraining:negative_control).

Pairwise Jaccard similarity. For each method, peaks were loaded,
and asetwas constructed with all nucleotidesin the tiled region called
significant. For each pair of peak calling methods, the Jaccard similarity
was computed as

AN Bl
IAUBI

For the ‘Canonical Elements’, we used the coordinates of the
GATAI promoter (hg38 chromosome X: 48786330-48786733), eGATAL
(chromosome X: 48782816-48783227) and eHDAC6 (chromosome X:
48800584-48800859).

Effect sizes within peaks. For comparison of the distribution of guide
effects (log, (FC)) for the sgRNAs falling within peaks identified by dif-
ferent peak callers, we started by using Eq. 2 to calculate the log, (FC)
for each guide. We then picked the sgRNAs that overlapped with the
called peaks for each analysis tool and plotted the log, (FC) values of
the filtered sgRNAs.

Nucleotide overlap with annotations. Peaks identified by differ-
ent CRISPR cCRE callers were intersected with ENCODE (DHS: ENC-
SROOOEKS; H3K27ac: ENCSROOOAKP) and SCREEN annotations
(Supplementary Table18).

Intersection of CRE calls. Significant CRE calls from each peak caller
were intersected using bedtools multiinter. The output was used to
generate the UpSet plots using the ‘upset’ function within the R pack-
age UpSetR.
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Comparison of time points

A CRISPRi growth screen with sgRNAs tiling the GATAI locus (ENC-
SR719QWB) was used to analyze the effect of time point selection.
CASA peak calls were generated as described above. Relatedly, a CRIS-
PRi HCR-FlowFISH screen at the GATAI locus (ENCSR917XEU) was
inspected for dropout due to potential growth effects.

Strand-specific quantification of sgRNA effect sizes

AlICRISPR screens used in this analysis had specific gene targets (CRIS-
PRigrowth screen tiling across the GATAI locus and HCR-FlowFISH),
and their sgRNAs were unambiguously labeled as either template
strand- or coding strand-targeting sgRNAs depending on which strand
their protospacers were located relative to the transcriptional direc-
tions of their target genes (Fig. 6a,b). For the GATA1 CRISPRi growth
screen, sgRNAs were filtered for GuideScan aggregated CFD specificity
scores of >0.2 to remove sgRNAs with off-target growth effects. We
then labeled each sgRNA as gene targeting if its PAM sequence was
located between 2,000 bp downstream of TSSand TES. The 2,000 spac-
ers were used to exclude gene body-targeting sgRNAs that were TSS
proximal and affected promoter activities. sgRNAs with PAM sequences
located between 2,000 bp upstream of the TSS and the TSSitself were
labeled promoter targeting, and all other sgRNAs were labeled ‘outside’
(Fig. 6¢). RefGene annotations were used to identify TSSs and TESs for
each gene, and for genes with multiple isoforms, isoforms with the
highest levels of K562 Pol Il ChIP-seq signals (ENCFF914WIS, signal
Pvalues) atboth the TSS and TES were used. Based on theresults of the
HCR-FlowFISHscreen, it appeared that PVT1was primarily expressed
from an alternative TSS in K562 cells. This position overlaps the CRE
termed e3 in a previous K562 screen’ (but was not included as a TSS
in RefGene), and we used its position (chromosome 8:128045692) as
the TSS of the PVTI gene for length analyses. Three of 20 HCR-Flow-
FISH experiments were excluded from this analysis (Fig. 6d), as they
had less than five tested protospacers located within template strand
promoters, coding strand promoters, template strand gene bodies or
coding strand gene bodies.

Chromatin accessibility measurement in primary mouse
regulatory T cells

Chromatinaccessibility was measured using the Omni-ATAC protocol*
on 50,000 sort-purified CD4*Foxp3-GFP* regulatory T cells that had
beendifferentiated in vitro from sort-purified naive CD4* T cells from
C57BL/6 mice.

Stain-and-sort screen for Gitr expression in primary mouse
regulatory T cells
Twelve ATAC-seq peaks within 50 kb of the Gitr (Tnfrsf18) locusin regu-
latory T cells were selected for gRNA design using GuideScan2. The
resulting gRNAs were filtered to keep those with a specificity score of
>0.2, to remove repeats of GGGGG and TTTTT and to restrict guides
thatoverlap by more than 5 bp. This left 404 targeting sgRNAs to which
40 nontargeting gRNAs were added as negative controls.
ThegRNAlibrary was clonedinto amouse stem cell virus retroviral
mU6 promoter-driven expression system using NEBuilder HiFi DNA
Assembly (New England Biolabs, E2621L). This retrovirus contains a Thyl
reporter gene under the control of aseparate Pgk promoter. gRNA con-
taining retrovirus was produced using the Platinum-E Retroviral Pack-
aging Cell Line (Cell Bio Labs, RV-101) following transient transfection.
Naive CD4" T cells were then collected from the spleen and lymph
nodes of Foxp3-eGFP dCas9-KRAB CD4-CRE C576BL/6 mice using
magnetic selection (Thermo, 8804-6821-74)%*. Four mice were used
as independent biological replicates. Cells were seeded at 0.5 x 10°
cells per mland cultured in complete RPMI (10% fetal bovine serum, 1%
penicillin, 1% streptomycin, 1% gentamicin, 1% L-glutamine, 1% HEPES,
1% sodium pyruvate and 55 nM 2-mercaptoethanol) and activated under
ThO conditions (250 ng ml™ anti-CD3, 1 pg ml anti-CD28, 2 pg ml™*

anti-interleukin-4 (IL-4) and 2 pg ml ™ anti-interferon-y). Cells were
transduced at 24 hwith viral supernatant containing 6.66 ng pl ™ poly-
brene and at 900g for 2 h at 30 °C. Cells were then cultured under
regulatory T cell polarizing conditions (ThO conditions + 10 ng ml™[L-2
and 10 ng mI™ human transforming growth factor-B) for 96 h. Live cells
were stained for viability withe780 (Thermo, 65-0865-14), GITR-PE (BD
Bioscience, 558140), CD4-e450 (Thermo, 48-0042-80) and THY1.1-APC
(Stem Cell Technologies, 60024AZ) for 30 min onice and sorted using
a Sony SH800Z with a 70-pum chip. At least 40,000 cells were sorted
from the top and bottom 15% of GITR signal (gating: lymphocytes/live/
singlets/CD4"/THY1.1"/Foxp3-eGFP'/GITR""°). gDNA was recovered
using aZymo Quick-DNA Miniprep Plus kit (Zymo, D4068), and gRNA
wasrecovered viaPCR. Libraries were sequenced on anllluminaMiSeq
using 20-bp single-end reads.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The genomic and epigenomic annotation files used in this analysis are
providedin Supplementary Table 4. Accession IDs for public datasets
used inthis study are provided in Supplementary Table 18.
AlICRISPR screen datasets used in this study are available in the online
ENCODEportal,andaccessionIDsareincludedinSupplementary Tablel.
sgRNA counts for the GATAI titration experiments are provided in
Supplementary Table 11. The Gitrregulatory T cell screening data can
befoundat https://www.dropbox.com/scl/fo/7q92wt7zyejfkwetsgsr6/
h?rlkey=30ytwfaazty33bz3ez30coiy8&dI=0. Public CSC track hub
repositories to visualize CRISPR screen data and results are available
for Figs. 1 (https://data.cyverse.org/dav-anon/iplant/home/joh27/
track_hub_figl/hub.txt) and 6 (https://data.cyverse.org/dav-anon/
iplant/home/ohjinwoo94/track_hub_fig6/hub.txt).

Code availability

The code for CASA can be found at https://github.com/sjgosai/casa.
The code for using GuideScan2 to design sgRNAs for all cCREs can be
found at https://github.com/schmidt73/encode_pipeline. GuideS-
can2 is available with a web interface at https://guidescan.com/. The
code used forother analysesis available online at https://github.com/
Reilly-Lab-Yale/ENCODE-CRISPR.
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Extended Data Fig. 1| Integrated analysis of K562 screens nominates
features of functional CREs. A) The percent of total significant CREs (n = 210)
thatintersect union sets of annotations from ENCODE biosamples and K562
annotations. B) Upset plot of the intersection of significant CREs with SCREEN
K562 cCREs, and K562-annotated accessible chromatin regions, histone marks,
EP300, CTCF, POLR2A, peaks. Blue highlight indicates CREs that intersect all
features. C) Signal fold change over background for K562 features in CREs

(n =210 CREs, colored in green) versus perturbed regions (n = 3213 regions,

coloredingray). Note each value was increased by 0.01and then log,,-
transformed for visualization. All comparisons except H3K9me3 were significant
atPvalue < 0.01 (Two-sided Wilcoxon test P values noted in the plot). Full test
results and mean and median signal values reported in Supplementary Table
7.Each box ranges from the first quartile to the third quartile with aline drawn
atthe median. Lines extend to 1.5x the interquartile range and individual dots
extending beyond this range indicate outliers.
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Extended Data Fig. 4 | Selecting cCREs and targeting sgRNAs near DHS
summits. A) Epigenetic feature peak intersections with significant CREs
identified in 16 HCR-FlowFISH screens. B) Browser track highlighting two
significant enhancers within FADS2. The K562 Al TF ChIP track was created by
concatenating all ENCODE K562 TF ChIP-seq experiments, and de-duplicating
non-unique peak calls. The height of the track represents the number of unique
TFswith peaks at a position. The average effects of each sgRNA from the FADS1
HCR-FlowFISH screen (n =2replicates). C) The effects of all sgRNAs across all
HCR-FlowFISH screens within 2000 bases of a significant enhancer’s DHS peak
are plotted, normalized to the average effect of all sgRNAs in their enhancer.
D) Same as (C), except sgRNAs are separated into 20 bp bins, with the mean
ofthe sgRNA’s enhancer-relative effects plotted for each bin; loess regression
linedrawn inblue. E) Comparison of sgRNA selection strategies for K562 HCR
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FlowFISH gene screens (n =20 loci), separated by gene expression levels (lowly
expressed <100 TPM, highly expressed >100 TPM) or F) gene body lengths
(shorter gene <20 kb, longer gene >20 kb) or. Points reflect the effects of 10
sgRNAs for significant enhancers, normalized to the mean effect of all sgRNAs
inthatenhancer.‘Random’is the average of 100 random subsets from across the
DHS peak. ‘Distal’ are sgRNAs closest to half the median DHS peak length (179 bp)
from the summit. Every ‘n™ sgRNA is selected by arranging sgRNAs in order of
their PAM’s genomic coordinate, and selecting every n™ sgRNA such that their
ranked orders are evenly spaced. ‘Closest’ sgRNAs are nearest to the DHS summit.
Boxes show the quartiles, with aline at the median, lines extend to 1.5 times the
interquartile range, and dots beyond lines show outliers. Significance evaluated
using Welch'’s t-test on each pairwise comparison.
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Extended Data Fig. 8 | Evaluating methods of selecting negative and positive 1000 times, compared to the entire set of the respective type of negative control
control sgRNAs. A) Boxplot of subsample variances for negative control sgRNAs sgRNA. P = 0.05threshold is indicated by the black line. C) Comparison of the

inthe CD164 HCR-FlowFISH screen, inincrements of 100 sgRNAs subsampled average effect from both biological replicates of the 10 sgRNAs closest to the
1000 times each from a total of 1000 sgRNAs for each type of negative control FANTOMS- and refGene-nominated TSSs for the HCR-FlowFISH genes against the
sgRNA. Each type of negative control was subsampled separately. Boxes show sgRNAs provided by the Dolcetto or the hCRISPRi-v2 libraries, which may target
the quartiles, with aline at the median, lines extend to 1.5 times the interquartile one or more of these-or distinct-TSSs. Each point reflects an individual TSS (for
range, and dots show outliers. B) Empirical P values from Levene’s test on the FANTOMS and refGene TSSs) or the set of 4-10 sgRNAs from the Dolcetto or
subsampled negative control sgRNAs, inincrements of 10 sgRNAs subsampled hCRISPRi-v2libraries that were tested in the HCR-FIowFISH screens.
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Extended Data Fig.10 | CRISPRi strand bias in the gene body. A) CRISPRi
effects shown relative to the position of the TSS and transcription end site (TES).
The TESis defined as the end of the transcript in UCSC RefGene (hg38). Points
show average normalized sgRNA effect (n = 2 replicates). B) sgRNA effects in
growth tiling screens using other modalities (CRISPRa, dCas9, or Cas9). Promoter
refers to sgRNAs that are between the TSS and 2000 bp upstream of the TSS.
Outside defined as outside the gene body, promoter, and K562 DHS peaks. P
values show T-test for the comparison across strands. Boxes show the quartiles,
withaline at the median, lines extend to 1.5 times the interquartile range, and
dots show outliers (left to right: n =2027,1731, 35, 28,101, 77 sgRNAs). C) CRISPRa
and Cas9 tracks show the average of two biological replicates, comparing Day 21
to plasmid. D) Gene length compared with strand bias, defined as the difference
between the median effect of coding strand-targeting and median of template
strand-targeting sgRNAs. sgRNAs between the TES and 2000 bp downstream

ofthe TSS areincluded, and genes less than 2000 bp are excluded (n =17 loci
with2replicates each). E) Strand bias similarly compared with expression level
from RNA-seq in K562 cells (n =20 loci). F) Points show the average effect of all
sgRNAs targeting the promoter (n =19 promoters with 2 replicates). G) sgRNA
effects ina CRISPRi FlowFISH tiling screen for FADS2 regulatory elements. The
two intronic CREs are defined as 500 bp windows centered on CASA peak calls
and are annotated in Fig. 6b (left to right: n =2105,1935,107,126, 32, 26, 27,19,
1940, and 1786 sgRNAs). H) Strand bias at a CRE within the gene body in a CRISPRi
tiling HCR-FlowFISH screen of the NMU locus. I) Points show average effects of all
sgRNAs targeting a CRE, defined asa 500 bp region centered on aK562 DHS that
overlaps a CASA peak and is outside of the promoter (n = 2 replicates). CREs with
>5sgRNAs areincluded. Strand is defined with respect to the target gene (which
may not correspond with transcriptional status of intergenic regions).
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and epigenomic annotation files used in this analysis are provided in Supplementary Table 4. Accession IDs for public datasets used in this study are provided in
Supplementary Table 18.

All CRISPR screen datasets used in this study are available in the online ENCODE portal and accession IDs are included in Supplementary Table 1. sgRNA counts for
the GATAL titration experiments are provided in Supplementary Table 11.

The Gitr T-reg screening data can be found here: https://www.dropbox.com/scl/fo/7q92wt7zyejfkwetsgsr6/h?rlkey=30ytwfaazty33bz3ez30coiy8&dI=0
Public repositories to visualize CRISPR screen data and results from Fig. 1 and Fig. 6 are listed below:
Fig. 1: https://data.cyverse.org/dav-anon/iplant/home/joh27/track_hub_figl/hub.txt

Fig. 6: https://data.cyverse.org/dav-anon/iplant/home/ohjinwoo94/track_hub_fig6/hub.txt
The hg38 human reference genome was used.
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Sample size No sample-size calculation was performed. CRISPR screens were performed with 2 biological replicates that were separately screened and
sequenced. Calling hit CREs within these screens relies on the scores of multiple sgRNAs targeting the element (with two bioreps each).

Data exclusions  No data exclusions

Replication Screens were analyzed with biological replicates and the screen scores for a subset of 30 sgRNAs were confirmed to correspond with
individual validation experiments (Supplementary Fig 1). In the GATA1 locus, a similar CRISPRi screen was performed independently by three
laboratories and results compared to identify replicable hits.

Randomization  Unbiased screens were performed wherein libraries of targeting and negative control sgRNAs are delivered into cell populations by lentivirus,
so control and targeted groups are grown together in the same cell population. No need to select certain samples for certain treatment

groups in this context.

Blinding Blinding was not possible in the context wherein individual researchers were responsible for performing full screen experiments through data
generation. However, datasets from each center were analyzed by researchers from another center.
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Materials & experimental systems

Methods

Involved in the study
|:| Antibodies
|Z Eukaryotic cell lines

[] clinical data
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Eukaryotic cell lines

|:| Palaeontology and archaeology

|:| Dual use research of concern

n/a | Involved in the study

|Z |:| ChiIP-seq
|:| |Z Flow cytometry

|Z |:| MRI-based neuroimaging

|:| Animals and other organisms

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)
Authentication

Mycoplasma contamination
Commonly misidentified lines

(See ICLAC register)

Flow Cytometry

K562 cells with a doxycycline-inducible CRISPRi were a gift of the Lander lab.

Not authenticated. However, CRISPRIi-BFP was induced for 24 h with a final concentration of 1 ug/ml doxycycline (VWR) and
then active CRISPRi was checked by confirming dox-induced BFP/CRISPRi sighal was observed in >90% of cells by flow
cytometry.

Quarterly mycoplasma testing for the cells used in GATAL experiments. All cells tested negative for mycoplasma.

None

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Naive CD4+ T cells were harvested from spleen and lymph nodes of Foxp3-eGFP dCas9-KRAB CD4-CRE C576BL/6 mice using
magnetic selection (Thermo Cat# 8804-6821-74)67. 4 mice were used as independent biological replicates. Cells were seeded
at 0.5e6 cells/mL and cultured in complete RPMI (10% FBS, 1% Penicillin, 1% Streptamycin, 1% Gentamicin, 1% L-glutamine,
1% HEPES, 1% sodium pyruvate, 55nM 2-mercaptoethanol) and activated with ThO conditions (250 ng/mL aCD3, 1 ug/mL
aCD28, 2 ug/mL all-4, 2 pg/mL alFNg). Cells were transduced at 24 hours with viral supernatant containing 6.66ng/uL
polybrene and at 900 x g for 2 hours at 30C. Cells were then cultured in Treg polarizing conditions (ThO conditions + 10ng/mL
IL-2, 10ng/mL hTgfB) for 96 hours. Live cells were stained for viability-e780 (Thermo Cat# 65-0865-14), Gitr-PE (BD Bioscience
Cat# 558140), CD4-e450 (Thermo, Cat# 48-0042-80), Thy1.1-APC (Stem Cell Technologies, Cat# 60024AZ) for 30 minutes on
ice and sorted using a Sony SH800Z with a 70 um chip.

Sony SH800Z with a 70um chip
Sony SH800 software was used to collect and analyze the data.

We selected the 15% high and low expressing cells for sequencing. The purity of sorting (52-70%) resulted is shown in
Extended Data Figure 5C. At least 40,000 cells were sorted from the top and bottom 15% of Gitr signal (Gating:
Lymphocytes / Live / Singlets / CD4+ / THY1.1+ / FOXP3-eGFP+ / GITRhi/lo).

FSC/SSC gates were drawn as a polygon to select viable cells. Linear gates drawn to capture the higher of two clear peaks,
and polygon gates drawn to capture the 15% High and Lo cells, used for sorting viable CD4+/Thy1+/Foxp3-eGFP+ cells into
GITR-Lo and GITR-Hi bins are shown in Extended Data Figure 5B. Flow analysis of GITR expression in the sorted populations is
shown in Extended Data Figure 5C.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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