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The ENCODE Consortium’s efforts to annotate noncoding cis-regulatory 
elements (CREs) have advanced our understanding of gene regulatory 
landscapes. Pooled, noncoding CRISPR screens offer a systematic approach 
to investigate cis-regulatory mechanisms. The ENCODE4 Functional 
Characterization Centers conducted 108 screens in human cell lines, 
comprising >540,000 perturbations across 24.85 megabases of the 
genome. Using 332 functionally confirmed CRE–gene links in K562 cells, we 
established guidelines for screening endogenous noncoding elements with 
CRISPR interference (CRISPRi), including accurate detection of CREs that 
exhibit variable, often low, transcriptional effects. Benchmarking five screen 
analysis tools, we find that CASA produces the most conservative CRE calls 
and is robust to artifacts of low-specificity single guide RNAs. We uncover a 
subtle DNA strand bias for CRISPRi in transcribed regions with implications 
for screen design and analysis. Together, we provide an accessible data 
resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE 
SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate 
functional characterization of the noncoding genome.

The noncoding genome contains critical regulators of gene expression 
and harbors >90% of trait-associated human genetic variation1–4. Major 
efforts over the past decade have mapped hundreds of thousands of 
noncoding candidate cis-regulatory elements (cCREs)5–7. Such efforts 
have relied primarily on mapping sequence conservation and biochemi-
cal markers that are correlated with regulatory activity rather than 
direct functional characterization. Site-specific, programmable and 
highly scalable CRISPR genome and epigenome manipulation methods 
have enabled massively parallel perturbation assays to identify and 

characterize functional CREs. However, the overlap between CREs, ele-
ments with empirically characterized endogenous function, and cCREs, 
elements nominated by biochemical markers, screens or sequence 
content, is unknown.

Various CRISPR-based perturbation methods have been developed 
to determine the effects of different cCREs on target gene expression 
and/or downstream phenotypes8–14. Systematic benchmarking of 
noncoding CRISPR screening methods and attempts to harmonize 
the results have been limited by low numbers of available datasets and 
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these data, we found that 230.6 kb (2.82%) of the 8.2 Mb perturbed in 
greater than or equal to one experiment displayed control of gene 
expression or cellular growth (n = 355,356 unique perturbations;  
Fig. 1b, Supplementary Table 1 and Methods). Across all experiments, 
0.49% of ENCODE SCREEN cCREs (11,447/2,348,854) intersected per-
turbed regions, and, of this subset, 5.31% (608/11,447) overlapped a 
functional hit CRE. We intersected the identified CREs (n = 210; Sup-
plementary Table 4) with annotations of K562 cells and observed 
the greatest overlap with ENCODE SCREEN cCREs (97.6%, 205/210; 
two-sided Fisher’s exact test, P = 5.90 × 10–10, odds ratio (OR) = 7.88) and 
the greatest enrichment of H3K27ac, RNA polymerase II (RNA Pol II) and 
H3K4me3 peaks (OR = 22.1, 14.5 and 10.8, respectively, P < 1 × 10–5 for 
each; Fig. 1c and Supplementary Tables 5 and 6). Similar enrichments 
were observed for ENCODE SCREEN cCREs and the union set of DNase 
hypersensitive sites (DHSs) across 95 different cell and/or tissue types 
(Extended Data Fig. 1a and Supplementary Table 6). Together, these 
results suggest that many epigenetic and accessibility assays are largely 
indicative of regulatory activity in noncoding CRISPR screens.

We next interrogated which feature(s) best defined CREs identified 
in CRISPR screens. The vast majority of CREs in K562 cells overlapped 
either accessible chromatin regions or H3K27ac peaks (95.2%, 200/210; 
Extended Data Fig. 1b), in agreement with other cell lines (for example, 
HepG2, HCT116 and MCF-7)32. However, 24 CREs are marked by H3K27ac 
peaks but do not overlap DHSs, and 18 overlap DHSs but lack H3K27ac 
peaks (11.4% and 8.6%, respectively). Nine CREs lack either of these 
features in K562 cells, but seven of those elements are located within 
DHSs in at least one other ENCODE biosample. We observed a greater 
median signal for chromatin accessibility, H3K4me1, H3K9me3, EP300, 
POLR2A and CTCF at CREs (Extended Data Fig. 1c and Supplementary 
Table 7). Some exhibit different combinations of epigenomic features 
(Extended Data Fig. 1b), in agreement with previous enhancers identi-
fied in massively parallel reporter assay studies33.

To determine if these K562 CRE features were applicable in other 
cell types, we intersected CREs identified in nine additional cell types 
with assay for transposase-accessible chromatin with high-throughput 
sequencing (ATAC-seq), DNase-seq and H3K27ac chromatin immuno-
precipitation with sequencing (ChIP–seq) peaks in the corresponding 
cell type (WTC11 iPSCs, n = 66 CREs; GM12878, n = 14 CREs; Jurkat, 
n = 12 CREs; A549, n = 4 CREs; HCT116, n = 3 CREs; MCF-7, n = 3 CREs; 
HepG2, n = 2 CREs; NCI-H460, n = 1 CREs; PC-3, n = 1 CREs). Across all 
cell types, the majority of CREs overlapped an accessible chromatin 
region, H3K27ac or both features (Fig. 1e and Supplementary Table 8). 
We then intersected the CREs in WTC11 iPSCs with additional activating 
and repressive histone mark ChIP–seq peaks and observed that most 
CREs overlapped regions with H3K4me1 and H3K4me3 in addition to 
H3K27ac, similar to the K562 CREs (Extended Data Fig. 2a). Interest-
ingly, we also observed a greater proportion of CREs that overlap 
repressive histone marks (H3K9me3 and H3K27me3) in WTC11 iPSCs 
than in K562 cells and CREs that are marked by both active and repres-
sive histone marks, consistent with the presence of poised and bivalent 
regulatory elements in stem cells34–36 (Extended Data Fig. 2a,b). Collec-
tively, these results support accessible chromatin and/or H3K27ac as 
defining features of CREs but indicate potential cell-type specificities.

CRISPR screen results are reproducible in validation 
experiments
To examine the reliability of the datasets, we compared the fold change 
(FC) in gene expression from individual sgRNA perturbations to the 
enrichment or depletion of those sgRNAs in CRISPR screens9,10,12,17,37. 
We found that the screen results significantly correlate with changes 
in mRNA expression of a CRE’s target gene in individual sgRNA valida-
tion experiments (R2 > 0.75 for all screens; Supplementary Fig. 1a–d 
and Supplementary Information Section 3).

To interrogate how different screening approaches compared 
at the same CREs, we identified sgRNAs used multiple times across  

inconsistent reporting. The ENCODE4 Functional Characterization 
Centers have generated the largest collective dataset of endogenous 
cCRE perturbation screens to date, including many loci perturbed to 
saturation in K562 cells, using diverse experimental approaches. Here, 
we compare noncoding CRISPR screening approaches and provide 
technical suggestions and data file formats potentially generalizable 
to such screens. We analyze various CRISPR noncoding screens exten-
sively in K562 cells and other biological systems at each screening stage, 
including (1) library design, (2) CRISPR perturbation selection, (3) phe-
notyping strategy and (4) analytical methods. By assembling and jointly 
analyzing this large repository of bulk CRISPR screens, we develop 
suggestions for study design, analysis and validation of experiments 
in these model systems and provide comprehensive benchmarking 
between methodologies. We demonstrate how experimental param-
eters can be tuned to address technical limitations. Finally, we leverage 
our combined analysis of 107 distinct CRISPR screens to interrogate 
broader properties of gene regulation.

Results
The ENCODE noncoding CRISPR database reveals CRE features
We present a diverse set of >100 noncoding CRISPR screens, all of which 
are available in the ENCODE portal15 (see Supplementary Information 
Section 2) and 35% of which are first published here (Fig. 1a and Supple-
mentary Tables 1–3). The data used in this study include three targeting 
approaches: (1) unbiased tiling screens that include single guide RNAs 
(sgRNAs) targeting cCREs and non-cCRE regions within a specific locus 
(for example, an entire topologically associated domain (TAD))9,10,16, (2) 
screens that select sgRNAs targeting cCREs in a given locus12,17,18 and 
(3) screens that target cCREs in multiple loci or across the genome19. 
Although tiling screens can identify novel CREs that lack epigenetic 
marks commonly associated with regulatory activity, cCRE-targeted 
approaches can screen many more putative regulatory elements with 
the same number of sgRNAs.

Three major CRISPR perturbation strategies were used: (1) small 
genetic perturbations induced by Cas9 nuclease (Cas9)20,21 and large 
genomic region deletions (~2–20 kilobases (kb)) induced with paired 
sgRNA8,16,22, (2) epigenetic repression, with deactivated Cas9 (dCas9) 
fused to a KRAB domain (CRISPR interference (CRISPRi))23–25, or (3) tran-
scriptional activation, with dCas9 fused to activator domains (CRISPR 
activation (CRISPRa)26–28; Fig. 1a). All screens introduced sgRNAs into 
cells at low multiplicities of infection via lentiviral transduction fol-
lowed by a bulk phenotyping method9–12,14,16–18,22,29–31. sgRNAs were then 
sequenced, and differences in sgRNA abundance were quantified to 
measure each sgRNA’s effect on the measured phenotype.

The ENCODE CRISPR screening database contains >540,000 
individual perturbations covering 24.85 megabases (Mb; 0.82%) of 
the human genome (Methods). Regulatory activity was assayed for 56 
genes and growth-related phenotypes in untreated and/or environmen-
tal perturbation contexts (for example, drug or stimulus) in 14 human 
cell lines, induced pluripotent stem cells (iPSCs) or iPSC-derived cell 
types, collectively identifying 865 distinct regions that significantly 
impacted a cellular phenotype when perturbed, hereafter referred to 
as CREs (Supplementary Tables 1 and 2 and Methods). In total, 4.0% 
(994,400/24,848,100) of perturbed bases displayed regulatory function, 
and 4.79% (2,547/53,197) of ENCODE SCREEN cCREs that were perturbed 
in at least one experiment directly overlapped a CRE. Notably, only 3.35% 
(29/865) of CREs did not directly overlap open chromatin regions, defined 
by DNase sequencing (DNase-seq) in 95 different cell and/or tissue types, 
or proximal enhancer-like signature cCREs (pELS) and distal enhancer-like 
signature (pDLS) cCREs, which demarcate accessible chromatin regions 
also marked by H3K27ac in at least one cell or tissue type; 99.7% of CREs 
(862/865) were within ±500 base pairs (bp) of these annotations

Because most experiments were performed in K562 cells, we lever-
aged 53 noncoding CRISPR screens to gain insights into the character-
istics and features that define CREs in this cellular context. Integrating 
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16 screens with varied library sizes and designs at two commonly stud-
ied loci, GATA1 (Fig. 1d) and MYC (Extended Data Fig. 3a–c). Together, 
these screens deployed >140,000 individual sgRNAs, perturbing 1,655 
cCREs in GATA1 and MYC flanking regions. For the 176 sgRNAs com-
mon between all five GATA1 screens (after filtering with GuideScan38,39 

cutting frequency determination (CFD) specificity scores of ≥0.2 to 
reduce possibly confounding off-target effects17), we observed strong 
replication within individual screening approaches (n = 5; Pearson cor-
relation, minimum: 0.59, maximum: 0.90, mean: 0.77). For CRISPRi, 
there was strong correlation between experiments (n = 36; Pearson 
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Fig. 1 | The ENCODE noncoding CRISPR screening database. a, CRISPR 
noncoding strategies including (1) perturbation design strategies, (2) CRISPR 
modality and perturbation strategies, (3) workflow of a standard screen,  
(4) phenotyping strategies and (5) analysis approaches; SpCas9, Streptococcus 
pyogenes Cas9; indels, insertions/deletions. b, Summary of the CRISPR screen 
data performed in human cell lines/types from the April 2022 release of the 
ENCODE portal. ‘Experiments’, ‘Cell lines/types’, ‘Modalities’, ‘Strategy’, ‘Genes/
phenotypes’ and ‘Perturbations’ reflect all human CRISPR screens. ‘K562 CREs’ 
and ‘K562 CRE–gene links’ reflect results of K562-focused analysis; pgRNA, paired 
sgRNA. c, OR for genomic annotation overlap with CRISPR screen-identified 
regulatory elements (n = 210; Methods). ‘All’ refers to cell-agnostic features. K562 
refers to cell-type annotations. All ORs were significant at a P value of <0.01, and 

values were log10 transformed for visualization (two-sided Fisher’s exact test).  
d, Genome browser snapshot of the GATA1 locus including H3K27ac (light gray) 
and DHS signal (dark gray) in K562 cells. CRISPR screen data (signal log2 (FC)) 
for one replicate each of CRISPRi FlowFISH (dark red), CRISPRi HCR–FlowFISH 
(orange), Tycko et al.17 CRISPRi growth (light blue), Fulco et al.12 CRISPRi growth 
(purple), Cas9 growth (red) and CRISPRa growth (dark blue). Previously 
validated GATA1 CREs are labeled on top in orange. e, The number of CREs that are 
significant in a CRISPR screen and overlap accessible chromatin regions, defined 
by ATAC-seq and DNase-seq and/or H3K27ac ChIP–seq peaks (dark gray) or do 
not overlap those features in ten cell lines (A549: 4/4; GM12878: 14/14; HCT116: 
3/3; HepG2: 2/2; Jurkat: 8/12; K562: 200/210; MCF-7: 3/3; NCI-H460: 1/1; PC-3: 1/1; 
WTC11: 65/66).
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correlation, minimum: 0.42, maximum: 0.90, mean: 0.56), while we 
identified similar MYC CREs independent of phenotypic readout 
(Extended Data Fig. 3a). By contrast, there was low correlation between 
CRISPRi and Cas9 tiling at GATA1 (n = 18; Pearson correlation, minimum: 
0.15, maximum: 0.32, mean: 0.21; Extended Data Fig. 3d), with most 
significant Cas9 sgRNAs targeting exons and most significant CRISPRi 
sgRNAs targeting DHSs (Extended Data Fig. 3e,f). For CRISPRa, the 
only significant sgRNAs were directly at the transcription start site 
(TSS) and were shared with dCas9 alone, suggesting dCas9-mediated 
steric hindrance effects (Extended Data Fig. 3f). Cas9 and dCas9 
alone can map functional motifs with finer resolution11,40, but some 
CRISPRi-responsive enhancers are not affected by sgRNA perturbations 
with these modalities (for example, the GATA1 enhancers)17. CRISPRa 
can be used in distinct contexts to find enhancers18,30 or long noncoding 
RNAs41 but has not yet been as widely adopted for noncoding screens, 
and more data are needed to inform guidelines for its use.

Integrated CRISPR screen analysis informs design guidelines
To improve sgRNA selection for noncoding CRISPRi screens to bal-
ance scale, sensitivity and practicality, we analyzed 15 highly sensitive 
CRISPRi hybridization chain reaction–fluorescence in situ hybridiza-
tion coupled with flow cytometry (CRISPRi HCR–FlowFISH) screens 
designed with unbiased tiling over 100 kb at eight loci in K562 cells8–10,16. 
Consistent with our findings described earlier, the significant CREs 
were found in accessible chromatin (74%) or H3K27ac ChIP–seq peaks 
(80%), with the majority having both epigenetic features (Extended 
Data Fig. 4a). Thus, a combination of CRE-associated epigenetic fea-
tures (Extended Data Fig. 1b) can be used to nominate cCRE targets.

Optimizing cCRE-targeting sgRNAs is crucial for maximizing 
perturbation strength without compromising practicality or scale. 
We compared relative sgRNA perturbation effects within significant 
enhancers and observed that sgRNAs overlapping a DHS peak induced 
stronger perturbations than those overlapping H3K27ac peaks (Fig. 2a; 
binomial test P < 0.001). Further, sgRNA effects across these enhancers 

revealed local perturbation maxima near the enhancers’ DHS summits 
(Fig. 2b and Extended Data Fig. 4b–d). Aggregating all significant 
enhancers together, we found that sgRNA effects are strongest nearest 
the DHS summit, with a near-linear decrease as a function of distance 
from the summit (Fig. 2b and Extended Data Fig. 4c,d). This result held 
regardless of gene expression level or length (n = 20 loci; Extended 
Data Fig. 4e,f). We compared methods for selecting sgRNA subsets and 
confirmed that sgRNAs closest to the DHS summit performed better 
than sgRNAs that were farther away or randomly or evenly spaced apart 
(Fig. 2c). This selection method is straightforward and only requires 
summit calls, standard output from peak callers such as MACS2  
(ref. 42). To validate these findings in an orthogonal biological context, 
we performed a CRISPRi screen in primary mouse regulatory T cells by 
staining and sorting for GITR expression and found a similar relation-
ship with stronger perturbation effects closer to DHS summits than 
H3K27ac summits (Extended Data Fig. 5a–e).

As enhancers can be far from their target gene, screening all poten-
tial cCREs in this range may not be feasible12,43,44. When considering 
all K562 screens, we found that 86% of significant CREs are within the 
same TADs as their target gene and had greater effect sizes than those 
in different TADs (Extended Data Fig. 6a–c). Predictive modeling using 
the activity-by-contact (ABC) model12,43 identified 43% of these CREs. 
Together, chromatin contact maps and predictive modeling can be 
used to prioritize target cCREs in a screen.

Next, we investigated the minimally sufficient number of sgR-
NAs needed to test a target’s significance at a given effect size. We 
analyzed a GATA1 FlowFISH screen10 and observed that 13 sgRNAs, 
selected randomly within the eHDAC6 enhancer, are required to pro-
vide over 80% power to detect enhancers with a 40% or greater effect 
on gene expression (Fig. 2d). We found similar results for eGATA1 
and mouse regulatory T cell Tnfrsf18 (Gitr) enhancers (Extended 
Data Figs. 5e and 7a,b).

sgRNA specificity and sequence filters display different 
impacts between gene expression and proliferation-based screens. 
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unscaled (n = 3 biological replicates).
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Low-specificity sgRNAs often confound proliferation-based screens 
due to off-target toxicity17. A GuideScan aggregated CFD specificity 
score of ≥0.2 is an effective filter, and several high CFD score sgRNAs 
typically remain near the DHS peak (Extended Data Fig. 7c)45. How-
ever, we found that significant sgRNAs in HCR–FlowFISH screens were 
not significantly enriched for low-specificity sgRNAs (Extended Data  
Fig. 7d). Therefore, specificity filters as stringent as a GuideScan aggre-
gated CFD specificity score of ≥0.2 may not be needed to avoid false 
positives in HCR–FlowFISH screens, in contrast to growth screens. 
sgRNA spacer sequence also affects efficacy; sgRNAs containing the U6 
promoter termination sequence (‘TTTT’)46 had reduced relative effect 
sizes (Extended Data Fig. 7e; Welch’s t-test P = 1.7 × 10–4).

Negative-control sgRNAs are necessary to calibrate the null phe-
notype and test significance. Screens use either nontargeting sgRNAs 

or safe-targeting sgRNAs47 at inactive loci. Previous growth screens 
suggest that safe-targeting sgRNAs have stronger effects than non-
targeting sgRNAs due to DNA damage effects47. By contrast, there was 
no significant difference in the average effect of nontargeting versus 
safe-targeting sgRNAs in CRISPRi HCR–FlowFISH screens using 1,000 
of both types of negative controls (Welch’s t-test P = 0.23; Supple-
mentary Table 9). However, safe-targeting sgRNAs had significantly 
greater variance, demonstrating that they are more stringent controls 
for significance testing (Extended Data Fig. 8a; safe-targeting vari-
ance = 1.17 or nontargeting = 0.86, Levene’s test P < 0.001). Although 
increasing the number of control sgRNAs reduces their variance, 
there was no statistically significant difference in the variance of 700 
safe-targeting controls compared to all 1,000, suggesting that this 
may be sufficient for large-scale screens (Extended Data Fig. 8b).  
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To facilitate direct comparisons across screens, we provide a common 
set of safe-targeting sgRNAs (Supplementary Table 10)47. We note 
that these safe-targeting sgRNAs were designed based on existing 
Roadmap Epigenomic data and may inadvertently target active loci 
in a novel cell type or sample.

Finally, sufficient numbers of sgRNAs targeting the measured 
gene’s promoter should be included as positive controls to ensure that 
strong perturbations can be sensitively detected and to estimate the 
upper bound of measurable effect sizes47–49. We compared the average 
effects of the ten sgRNAs closest to each FANTOM and RefGene TSS for 
the HCR–FlowFISH genes, along with the four to ten sgRNAs from the 
human CRISPRi Dolcetto49 or hCRISPRi-v2 (ref. 48) libraries that were 
included in our libraries. We found that sgRNAs from the Dolcetto or 
hCRISPRi-v2 libraries provided average effects similar to the maximum 
average effect from perturbing all of the FANTOM and/or RefGene 
TSS(s) for 12 of 14 genes (Extended Data Fig. 8c). However, for FADS2, 
there were greater than twofold larger effects at some FANTOM and 

RefGene TSS(s) than the published sgRNAs. Because neither Dolcetto 
nor hCRISPRi-v2 was consistently best, including sgRNAs from both 
published libraries increases the likelihood of having potent positive 
controls, but designing ten sgRNAs nearest every TSS (where space 
allows) maximizes it.

To facilitate sgRNA library design in accordance with these recom-
mendations, we provide a summary of common sgRNA design tools 
(Supplementary Table 11). As a resource, we used GuideScan2 (ref. 38) 
to design sgRNA sets with and without filters for all human and mouse 
ENCODE SCREEN6 cCREs (Supplementary Fig. 2, Supplementary Table 
8 and Supplementary Section 4). These sets include at least ten sgRNAs 
for targeting 85% and 60% (without and with filters, respectively) of 
the 249,464 human proximal enhancer-like cCREs and 86% and 70% of 
the 111,218 in mice50. Importantly, these design guidelines are based on 
modeling of data produced from experiments that were conducted at 
similar coverage and power, deviations from which may require includ-
ing additional control or targeting sgRNAs.
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Cell and sequencing coverage impact CRE and sgRNA detection
We next interrogated how varying the number of cells per sgRNA 
impacts accuracy of CRE identification by using CRISPRi HCR–FlowFISH 
experiments at the GATA1 locus (Methods and Supplementary Table 12). 
We tested whether positive sgRNAs (those targeting the three validated 
CREs; n = 288) can be distinguished from negative sgRNAs (outside the 
three CREs; n = 13,444) by their log2 (FC) effect sizes. At low cell cover-
age (20×), effect sizes of both sets of sgRNAs had high variance, leading 
to limited statistical power for distinguishing positive signals from 
negative-control background (Fig. 3a). With increasing cell coverage, 
the variance of negative sgRNAs approaches 0, whereas the variance 
of positive sgRNAs stabilizes for coverages ≥50×. Thus, increasing cell 
coverage led to higher precision and sensitivity for distinguishing posi-
tive from negative sgRNAs (area under precision recall curve (AUPRC): 
20× = 0.44, 50× = 0.77, 100× = 0.81, 200× = 0.82; CRISPRi HCR–Flow-
Fish; Fig. 3b). Further, CASA peak calling with 50–200× cell coverage 
resulted in accurate identification of the known GATA1 CREs, whereas 
the 20× data resulted in spurious CRE calls lacking CRE-associated 
epigenetic marks (Fig. 3c). Last, with cell coverage of 20×, we observed 
a high dropout rate (sgRNAs with less than ten mapped reads in low- or 
high-expression sorting bins) of ~12%, which decreases to less than 1% 
with cell coverage greater than 50× (Supplementary Fig. 3). Based on 
these strong-to-moderate GATA1 CREs, experimental cell coverage 
of at least 100× should be considered the minimum, although higher 
coverage is advised when feasible. For example, coverage as high as 
11,000× has been used in noncoding growth-based screens17.

We also sought to derive sequencing depth guidelines for noncod-
ing CRISPR screens. We sampled, on average, 5× to 1,000× sequencing 
reads per sgRNA and found that with 250× sequencing depth or higher, 
accuracy of HCR–FlowFISH screens for GATA1 CREs is limited by cell 
coverage, such that further increases in sequencing depth only margin-
ally improves accuracy (Fig. 3d). We repeated the analysis in five other 
CRISPR screens, including growth screens performed at GATA1 and MYC 
loci, and found that 250× sequencing depth was a reasonable minimum 
for CRE identification accuracy. Further, we observed saturation of 
biological replicate correlation of guide effects and of guide dropout 
rate starting at 250× sequencing depth (replicate normalized log2 (FC) 
R > 0.9 and average dropout rate of <2% for all screens; Fig. 3e,f and 
Extended Data Fig. 9). In addition, we assessed normalization strategies 
and found that mean-normalized effect size calculations were more 
reproducible between biological replicates than linear-transformed 
effects. This finding was consistent for GATA1 screens with varied phe-
notyping strategies (Supplementary Fig. 4a) and for HCR–FlowFISH 
screens across 20 loci (Supplementary Fig. 4b).

CASA provides more conservative CRE calls than other 
methods
Noncoding CRISPR screens can produce noisy results when sgRNAs 
generate variable effects in a genomic interval (Fig. 4a). Multiple analy-
sis approaches, or ‘peak callers’, aggregate individual sgRNA measure-
ments from dense tiling screens to nominate CREs. We investigated the 
use of five peak callers: element-level aggregation of DESeq2 (aggrD-
ESeq2), CASA, CRISPR-SURF, MAGeCK and RELICS9,51–54 (Supplementary 
Table 13). We benchmarked the identification of GATA1 CREs using a 
CRISPRi tiling growth screen, excluding low-specificity sgRNAs (Fig. 4).  
Although a comprehensive, fully validated ground truth CRE set is 
lacking, these CREs have been rigorously epigenetically profiled and 
studied across multiple functional characterization assays9,10,12,15.

All peak callers nominated the promoter for GATA1 (Fig. 4a) as a 
CRE. Additionally, CREs called by all five methods corresponded with 
significantly higher sgRNA effects than shuffled control elements  
(Fig. 4b; P ≤ 5 × 10–9, Welch’s two-tailed t-test). However, the total num-
ber of CREs varied across each method, with aggrDESeq2 identifying 
the most (n = 21) and CASA and RELICS identifying the least (n = 3). 
Meanwhile, peaks called by CASA, CRISPR-SURF and MaGeCK had the 

greatest proportional overlap with annotated ENCODE SCREEN cCREs, 
H3K27ac peaks and DHSs (Fig. 4c). aggrDESeq2 CREs yielded the largest 
total overlap but also identified a greater proportion of CREs outside of 
annotations. We found that canonical GATA1 elements are most similar 
to CASA and RELICS CREs and least similar to aggrDESeq2 CREs (Sup-
plementary Fig. 5a). Finally, we inspected the intersection of GATA1 CRE 
calls from each method and found that CASA was the only peak calling 
method that lacked unique GATA1 CRE calls (Supplementary Fig. 5b).

To determine each method’s susceptibility to potential sgRNA 
off-target effects, we reanalyzed the GATA1 screen with low-specificity 
sgRNAs included (Methods and Supplementary Fig. 6a–d). The total num-
ber of CREs called by aggrDESeq2 increased by more than threefold (21 
CREs versus 68 CREs). The total number of CREs called by CRISPR-SURF, 
MAGeCK and RELICS increased by 12, 4 and 2, respectively, whereas the 
number of CREs identified by CASA did not change. After removing the 
single most significant sgRNA per bin, the total number of aggrDESeq2 
peak calls decreased to 11, indicating that the method is sensitive to poten-
tial outliers. Collectively, these results support CASA as the preferred 
method for CRE calling. To facilitate future analytical development and 
benchmarking, we propose processed data file formats that capture 
critical experimental parameters and include sgRNA-level and CRE-level 
effect quantification (Supplementary Information Sections 5 and 6).

Perturbation dynamics affect screen sensitivity
Our integrated dataset provides an opportunity to investigate pos-
sible interactions between perturbation timing, sgRNA effect sizes 
and phenotyping strategy. Conceptually, a higher-effect-size sgRNA 
would be expected to display detectable phenotypic impacts sooner 
than a weaker-effect-size sgRNA, but there is no clear consensus on if 
the initial plasmid pool of sgRNAs or an early time point after lentiviral 
delivery is the best initial sample comparator to identify sgRNA effects. 
We leveraged multiple GATA1 CRISPRi growth screen time points and 
sequenced sgRNAs in the predelivery plasmid pool, at 7 days after 
lentiviral guide delivery to cells (T7) and at an end point after 21 days 
(T21; Fig. 5a). Comparing plasmid to T7, we observed a significant CRE at 
the promoter but did not identify the distal eGATA1 and eHDAC6 CREs 
(Fig. 5b). However, both distal CREs were identified in the plasmid–T21 
or T7–T21 comparison (Fig. 5b), and the peak at the promoter widened 
by ~1 kb with increasing sgRNA effect sizes.

Although the sgRNA effect sizes from these two time point com-
parisons are correlated (R2 = 0.71), a subset of sgRNAs (<1%) displayed 
time point-dependent effects (Fig. 5c). These sgRNAs are strong 
(log2 (FC) > 3) in a plasmid–T21 comparison but have reduced effect sizes 
in a T7–T21 comparison. These sgRNAs largely target the GATA1 TSS. One 
of these sgRNAs (sgTSS-2) was individually validated to reduce GATA1 
expression and growth (Supplementary Fig. 1d and Supplementary 
Table 14). Another validated sgRNA (sgTSS-1, Supplementary Fig. 1d)  
displayed the third strongest effect in the plasmid–T21 comparison 
(log2 (FC) = 5.4) and the strongest effect in the plasmid–T7 comparison 
(log2 (FC) = 5.7) but dropped out by T7 and was not observed in the 
T7–T21 comparison and thus became a false negative. Together, this 
suggests that these rapidly depleted sgRNAs can cause bonafide growth 
phenotypes, and the strongest hits may be most affected by reduced 
sensitivity in the T7–T21 comparison.

We reasoned that screens based on growth may be more sen-
sitive to perturbation dynamics than screens that directly read out 
transcriptional changes. Indeed, an HCR–FlowFISH screen of GATA1, 
in which sgRNA abundances were compared before and 2 days after 
CRISPRi induction by doxycycline, identified both the promoter and 
the two distal CREs (Fig. 1d). This screen format was not susceptible to 
reduced power to detect the strongest TSS-targeting sgRNAs. Together, 
we suggest comparisons to initial sgRNA abundance before starting 
phenotypic selection, for example, by measuring sgRNA abundance 
in the input plasmid library or in cells before CRISPRi expression in an 
inducible system.

http://www.nature.com/naturemethods


Nature Methods

Analysis https://doi.org/10.1038/s41592-024-02216-7

CRISPRi effects in the gene body are strand specific
Most CRISPR screens model and analyze sgRNA effects without con-
sidering the potential impact of which DNA strand is targeted. Ana-
lyzing a CRISPRi growth screen tiling GATA1, we surprisingly found 
that sgRNAs targeting the coding strand affected growth, whereas 
template-targeting sgRNAs did not (P < 1 × 10–15; Fig. 6a). This differ-
ence was only observed in the GATA1 gene body, perhaps related to 
RNA Pol II binding the template strand during gene transcription. We 
again observed significantly greater effects for sgRNAs targeting the 
coding strand within the gene body in the FADS1 and FADS2 HCR–Flow-
FISH CRISPRi tiling screens (P < 1 × 10–15; Fig. 6b,c). These coding strand 
effects were uniform throughout the transcribed gene body and ended 
at the transcription end site (TES; Extended Data Fig. 10a). We observed 
much weaker effects from the same library of sgRNAs targeting either 
strand in the gene body when using dCas9 alone (Fig. 6a) or when using 
CRISPRa (Fig. 6d and Extended Data Fig. 10b,c), suggesting that this 
phenomenon depends on the KRAB repressor (Fig. 6e). We propose 
a model wherein dCas9 binding could be reduced on the template 
strand due to competition with Pol II-mediated transcription, render-
ing KRAB ineffective. By contrast, when targeting the coding strand, 
KRAB can be effective.

To determine if this effect was present more generally, we 
expanded our comparison to 17 additional experiments (Methods). 
In all 17 CRISPRi screens, the average effect sizes of sgRNAs targeting 
coding strands within gene bodies were more than twofold higher 
than those targeting the template strands (Fig. 6d). The overall strand 
bias was not strongly associated with gene length or expression level 

measured by RNA sequencing (Extended Data Fig. 10d,e). In contrast 
to this strand bias in the gene body, there was no difference between 
coding and template strand sgRNA effects for all 17 corresponding 
promoters (Extended Data Fig. 10f).

Many enhancers reside within gene bodies55, motivating us to 
consider if these CRISPRi effects throughout gene bodies could be 
distinguished from effects at intragenic enhancers. FADS2 contains 
intragenic enhancers, as determined by concordant signals from CRIS-
PRi HCR–FlowFISH, DHS and H3K27ac ChIP–seq (Fig. 6b). In contrast to 
elsewhere in the gene body (and more similarly to intergenic enhanc-
ers), sgRNAs targeting both strands in these two enhancers had a sig-
nificant effect on FADS2 expression, although sgRNAs targeting the 
coding strand had a moderately greater effect than those targeting 
the template strand (P = 0.034 and 0.018, respectively; Fig. 6b and 
Extended Data Fig. 10g). This coding strand bias was present at some, 
but not all, intragenic CREs (for example, NMU and CAPRIN1; Extended 
Data Fig. 10h,i). These results demonstrate the necessity of considering 
strand to reliably identify intragenic CREs with CRISPRi.

Discussion
CRISPR-based methods to examine CREs are an imperative step toward 
understanding the mechanisms that govern gene regulation and how 
disruption of these CREs contribute to disease. However, there are no 
common controls nor consensus on experimental design parameters, 
execution and analysis methods. This lack of a systematic comparison of 
screen sensitivity and specificity made evidenced-based sgRNA library 
design difficult, especially for modest-effect-size CREs or single-cell 
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‘omics readouts56. To address these limitations, we performed a com-
prehensive analysis of the ENCODE noncoding CRISPR screen datasets 
and proposed guidelines for screen implementation, standardized file 
formats and processed data expectations.

Our finding that the strongest enhancer-perturbing CRISPRi sgR-
NAs are nearest to distal CRE DHS summits is an important design crite-
ria, potentially explained by accessibility improving CRISPRi efficiency, 
higher transcription factor motif density and/or more optimal sgRNA 
target sequences. Transcription-based screens are less susceptible to 
off-target effects than growth screens, potentially due to off-target 
sites impacting cellular proliferation more often than a single measured 
gene17,47. We report a CRISPRi strand bias specific to gene bodies that is 
particularly evident in non-CRE regions of gene bodies, similar to previ-
ous findings with Cas9 nuclease57. Whereas template strand-targeting 
sgRNAs with Cas9 show improvements for genome editing, our results 
suggest that CRISPRi is stronger with coding strand-targeting sgRNAs 

in the gene body and a need for strand-aware analysis to distinguish 
intragenic CREs from the subtle effects of CRISPRi throughout the 
gene body. After CRISPRi targeting, deposition of repressive H3K9me3 
and diminished accessibility have been observed at the target CRE18,25, 
but such characterization is lacking for the vast majority of known 
CRISPRi-sensitive CREs.

We compared several peak callers for de novo CRE discovery in 
tiling screens and found that, although all identify positive-control 
CREs, CASA maintained both sensitivity and precision with fewer false 
positives from off-target noise. In sparse cCRE-targeting and cCRE/
locus-tiling screens, including biological replicates and increasing 
sgRNA number were critical for detecting weak elements and improv-
ing power. We advise considering the thresholds described in this study 
for experimental coverage and sgRNA numbers as minimums and 
empirically evaluating power in other experimental systems, includ-
ing single-cell ‘omics readouts that may suffer from data sparsity58. 
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are categorized by target strand in the (top) GATA1 CRISPRi growth screen 

(n = 2,026, 1,731, 34, 27, 100 and 77 sgRNAs from left to right) and the (bottom) 
FADS1 HCR–FlowFish screen (n = 3,121, 3,249, 90, 69, 520 and 702 sgRNAs). Boxes 
show the quartiles with a line at the median, vertical lines extend to 1.5 times 
the interquartile range, and dots show outliers. Asterisks denote significance 
with P < 1 × 10–15 by two-sided t-test. d, Strand specificity across screens tiling 17 
loci for sgRNAs targeting the gene body. Each point is the average effect of all 
sgRNAs from a screen targeting that region averaged across two screen biological 
replicates, with color indicating the phenotypic readout and shape indicating the 
type of CRISPR perturbation. e, Proposed model of gene body strand bias.
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Likewise, we expect that future analytical packages will incorporate 
replication, strand bias and sgRNA efficacy to improve CRE detection.

An important limitation is that these experiments covered only 
16 biosamples, with a strong emphasis on K562 cells due to data avail-
ability. Although we did validate key findings in mouse primary regula-
tory T cells, more systematic screening across phenotypes, cell types 
and genomic regions is needed to capture the range of cis-regulatory 
mechanisms. Guidelines for orthogonal CRISPR modalities (for exam-
ple, CRISPRa) may differ from CRISPRi (as they differ at promoters48) 
and may be biased by library designs, phenotypic readouts, specific 
genomic loci perturbed and analysis methods used in these experi-
ments. Building a larger, more diverse collection of CREs will improve 
guidelines for selecting sgRNAs and will empower refinement and 
benchmarking of methodological guidelines and analysis techniques. 
Although others have found limited evidence for regulatory function 
outside known K562 cell DHSs or H3K27ac sites59, previous studies have 
also identified putative repressor elements via CRISPRi perturbations, 
including a REST-driven repressor of FADS3 (ref. 9) as well as evidence 
of silencer elements using reporter assays60,61.

Optimal experimental and analytical parameters are needed to 
increase the scale and/or sensitivity of CRISPR screens, especially 
as they are increasingly applied with multiplexed readouts and in 
single-cell schemas8,59. Recommendations based on bulk CRISPR 
screens, such as prioritizing sgRNAs targeting the DHS peak, should 
apply to single-cell screens, but minimum sgRNA number per cCRE and 
optimal cell and/or sequencing coverages will likely differ. Currently, 
the most extensive published single-cell dataset uses two sgRNAs 
per target, precluding an in-depth analysis of optimal sgRNA density 
per cCRE44. Based on a diverse set of CRISPR screens in the ENCODE 
database, along with predesigned sgRNAs for cCREs, this work will 
accelerate the functional characterization of regulatory elements 
across the genome and make noncoding CRISPR screening methods 
accessible to the broader community.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-024-02216-7.
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Methods
Cell lines and cell culture
K562 cells with a doxycycline-inducible CRISPRi blue fluorescent pro-
tein (BFP) were a gift from the Lander lab (Broad Institute, Cambridge, 
MA, USA) and were identical to those used in a previous study9. In that 
study, the cells were generated by (1) transducing K562 cells with a 
construct expressing reverse tetracycline transactivator linked by IRES 
to a neomycin resistance cassette expressed from an EF1α promoter 
(ClonTech) and selecting with 200 µg ml–1 G418 (Thermo Fisher) and 
(2) transducing these reverse tetracycline transactivator-expressing 
K562 cells with a KRAB-dCas9 construct. Cells expressing BFP were 
selected by fluorescence-activated cell sorting. Cells were grown in 
RPMI-1640 GlutaMAX (Gibco) with 10% heat-inactivated fetal bovine 
serum (Gibco).

GATA1 screen with varied cell coverage
A previously described noncoding GATA1 lentiviral library was used9. 
CRISPRi BFP was induced for 24 h with a final concentration of 1 µg ml–1 
doxycycline (VWR). Active CRISPRi was checked by confirming that 
doxycycline-induced BFP signal was observed in >90% of cells by flow 
cytometry (Sony, MA900). Cells were grown for 2 weeks after trans-
fection, following the HCR–FlowFISH protocol exactly as previously 
described9. High- and low-expression bins (top and bottom, 10% each) 
were also gated following the previous HCR–FlowFISH protocol9. Cells 
were sorted at multiple folds of library size (25×, 50×, 100× and 200×).

The ENCODE CRISPR Screen Database and overlap with cCREs
Individual sgRNAs were aggregated across fully released experiments 
with sgRNA-level and/or element-level quantification files performed 
in human cell lines using the November 2022 data release exclud-
ing single-cell gene expression readouts (Supplementary Table 1; 
‘included_in_all_meta’, n = 75). Note that three experiments were 
removed in the August 2022 data release. These experiments have 
been rereleased as of November 2022 but were excluded from all calcu-
lations. The coordinates of each sgRNA were adjusted based on the type 
of perturbation used in the corresponding experiment (Cas9 cutting: 
±10 bp of PAM, dCas9-KRAB: ±150 bp of PAM) and lifted from hg19 to 
hg38 genome builds when necessary. For 15 sgRNAs that did not have 
strand information in the associated elementReference or guideQuant 
files, the protospacer sequences were manually aligned to the hg19 
genome build to retrieve the strand information before adjusting for 
the perturbation modality. For paired sgRNA experiments, we consid-
ered each gRNA in a given pair as a unique perturbation and adjusted 
the coordinates as described above. The total number of perturbations 
was defined as the number of unique coordinate combinations after 
adjusting for the perturbation modality. These perturbation regions 
were then intersected (bedtools intersect) with 100-bp tiled bins across 
each chromosome, followed by merging of overlapping bins (bedtools 
merge -d 1), and the percentage of the human genome perturbed was 
calculated by dividing the sum of bases within the tiled bins by the 
effective genome size (3,088,269,832 bp). The significant CREs from 
each experiment (defined by the contributing lab) were intersected 
with the same 100-bp tiled bins and similarly merged to generate the 
final CRE set (Supplementary Table 2).

K562 cell screen integrated analysis. Individual sgRNAs were 
aggregated across released experiments performed in K562 cells with 
FlowFISH-based readouts with sgRNA-level and/or element-level quan-
tification files (November 2022 data release, excluding single-cell gene 
expression readouts; Supplementary Table 1, ‘included_in_k562_meta’). 
The coordinates of each sgRNA were adjusted based on the type of 
perturbation used in the corresponding experiment as described 
above and were lifted from hg19 to hg38 genome builds when neces-
sary. These perturbation regions and the CREs from each experiment 
(defined by the contributing lab) were then intersected with 100-bp 

tiled bins as described above to generate the perturbed and CRE sets, 
respectively. The CRE coordinates and feature overlap are provided in 
Supplementary Table 5.

The genomic and epigenomic annotation files used for enrich-
ment testing and signal comparison are provided in Supplementary 
Table 4. The perturbed regions and CREs were intersected with the 
significant peak calls or predicted ENCODE SCREEN cCREs (‘features’). 
A two-sided Fisher’s exact test was performed comparing the number of 
features overlapping a CRE to the total number of features perturbed. 
The results are reported in Supplementary Table 6. The UpSet plot 
comparing CRE overlap with features was generated using the R pack-
age ‘UpSetR’. To compare the signal of each feature between perturbed 
regions and CREs, bigWig files were converted to bedgraph format 
using the University of California Santa Cruz utility ‘bigWigToBed-
Graph’. Next, the perturbed regions and CREs were intersected with 
the bedgraph files containing FC over background signal (‘signal’). 
Signal values were then normalized by dividing by the element size, 
and a two-sided Wilcoxon test was performed comparing the median 
signal for each feature between perturbed, not significant regions and 
CREs. Two-sided Wilcoxon test and Student’s t-test results and median, 
mean and standard deviation of normalized signal values are reported 
in Supplementary Table 7.

CRE features in additional cell types. We retrieved the CREs (defined 
by the contributing lab) from the ‘elementQuantification’ files for each 
experiment and lifted hg19 to hg38 coordinates when necessary. The 
sources for the peak calls for each ‘feature’ are listed in Supplementary 
Table 18. The CREs were intersected with peak calls corresponding to 
a given feature. For WTC11 iPSCs, the UpSet plot comparing the CRE 
overlap to accessible chromatin regions and histone mark ChIP–seq 
was generated using the R package UpSetR. The count and propor-
tion of CREs overlapping each feature in all ten cell lines analyzed are 
reported in Supplementary Table 8.

CRISPR screen comparisons with individual sgRNA validations. 
sgRNA abundance and element activity values from CRISPR screens 
and results from experimental validations were obtained from sup-
plemental materials from each of the cited publications. Two-sided 
Pearson correlation values and associated P values between the vali-
dation assays and screen results were calculated using the ‘stat_cor’ 
function from the R package ‘ggpubr’.

Cross-screen analysis at GATA1 and MYC. hg38 PAM coordinates 
were used to uniformly analyze and compare the five CRISPR screens 
from various labs. For screens with hg19 coordinates, their proto-
spacer coordinates were first mapped to hg38 using bowtie1 and the 
‘-n–best’ options. The hg38 PAM coordinates for each screen were then 
extracted by taking the 3 bp downstream of each protospacer, which 
were confirmed to contain the expected NGG sequence. For the GATA1 
locus, 250 such PAM coordinates were found to be shared across the 
five screens, and these common PAM coordinates were filtered out 
for their sgRNA GuideScan target specificity (>0.2), leading to 176 
PAM coordinates that were used for pairwise effect size comparison of 
the five screens. Effect sizes were computed using mean-normalized 
log2 (FC) (Eq. 1 provided in Cell coverage/sorting depth titration experi-
ments for HCR–FlowFISH). To compare the effects of CRISPR–Cas9 
and CRISPRi at exons and DHSs, we obtained subsets of sgRNAs with 
significantly high log2 (FC) effect sizes (Z-score P < 0.001). We then 
extracted significant sgRNAs that target exons or K562 cell DHSs by 
overlapping their PAM coordinates with Ensembl-annotated exons 
and K562 cell DHSs obtained by extending K562 cell DHS narrow peaks 
(ENCFF899KXH) by 500 bp in both directions from their centers. For 
CRE annotations in the Cas9 versus CRISPRi comparison of effect 
sizes, sgRNAs were defined as targeting eGATA1 if their start position 
was within 48641136 and 48641797, eHDAC6 if their start position was 
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within 48658755 and 48659455 or GATA1 TSS if their start position was 
within 48644481 and 48645481.

ABC model CRE target predictions. We downloaded the ABC predic-
tions for K562 cells62 and evaluated the percentage of significant CREs 
identified in the HCR–FlowFISH screens that regulate the target gene pre-
dicted by ABC. ABC-predicted CRE–gene links were based on average HiC 
using an ABC score threshold of 0.015 for significant predicted links. CREs 
from the screens were intersected with the cCRE ranges provided by the 
K562 cell ABC predictions without any additional coordinate expansions.

Evaluating sgRNA effects in DHS or H3K27ac peaks. Significant, 
non-TSS-overlapping distal enhancer elements identified in any of 
the HCR–FlowFish screens that intersect both a DHS and H3K27ac 
peak were first selected. For each enhancer element, we calculated 
the mean effect of all sgRNAs within its intersecting DHS or H3K27ac 
peak region. The sgRNA intersections used the sgRNA’s 3-base PAM 
coordinate window.

Evaluating sgRNA effects as a function of distance from the DHS 
summit. Significant, non-TSS-overlapping distal enhancer elements 
identified in any of the HCR–FlowFish screens that intersect both a DHS 
and H3K27ac peak were selected. We then selected all sgRNAs within 
2 kb of the enhancer element’s strongest intersecting DHS summit and 
normalized their effect sizes to the mean of all sgRNAs intersecting that 
DHS peak (using the sgRNA’s 3-base PAM coordinate window).

To produce plots of DNase-seq, H3K27ac ChIP–seq and normalized 
sgRNA effects relative to the DHS peaks, we took the sgRNA coordinates 
around significant, nonpromoter enhancers and expanded them each 
by ±150 bp to conservatively approximate KRAB’s repressive window 
and assigned each base position that sgRNA’s normalized effect size. 
If multiple expanded sgRNA windows overlap, then their effects were 
averaged per base position. These data were converted into a bigWig 
file, and we used deepTools to plot the distance-dependent sgRNA 
effects along with DNase-seq and H3K27ac ChIP–seq signal tracks. 
Because of the noise present in the GITR screen, only significant, non-
promoter enhancers with an effect size of ≤–1 were included in the 
sgRNA effect analyses.

Evaluating significant CREs as a function of location within the 
same TAD as their target gene. Significant CREs in K562 cell screens 
with adjusted P values of ≤0.05 that reside inside a K562 cell HiC TAD 
(ENCFF173VDJ) were included for analysis. Sixty-five significant CREs 
were not in a TAD and were excluded. For each CRE’s target gene, it was 
determined if the consensus RefSeq promoter 1-kb window around the 
TSS was in the same TAD as the CRE.

Effect size-dependent sgRNA number per element power analy-
sis. For the guide downsampling analysis, we took guide-level effect 
sizes from the CRISPRi FlowFISH screens targeting the GATA1 locus 
and averaged the effect sizes from two biological replicates. We then 
took the sgRNAs targeting the eGATA1 enhancer and rescaled their 
effects so that the average of all 37 sgRNAs was a 0–50% perturba-
tion, in steps of 10%, of GATA1 expression. For each number n of sgR-
NAs, we sampled n sgRNAs from the scaled distribution, computed a 
Welch’s t-test P value (equal_var = False, dof = 1) against all nontargeting 
negative-control sgRNAs, performed a Benjamini–Hochberg correc-
tion with all elements tested in the screen and tested for false discovery 
rate (FDR) < 0.05. We repeated this procedure 500 times for each (effect 
size, guide number) pair and computed power as the fraction of times 
we correctly rejected the null hypothesis.

Off-target sgRNA enrichment analysis. For each respective screen, 
we selected sgRNAs located at least 1 kb away from any DHS peak, 
regardless of significance, or significant element. We used GuideScan 

to obtain sgRNA aggregated CFD scores, a summary score of off-target 
specificity based on the weighted likelihood of off-target activity across 
a full list of potential off-target sites and separated sgRNAs into low 
specificity (CFD < 0.2) or high specificity (CFD ≥ 0.2). We then calcu-
lated the proportion of sgRNAs in each specificity category that had 
effect sizes more than two times the standard deviation of negative 
controls from the mean of the negative controls and performed a 
Fisher’s exact test to derive a P value for each OR.

Safe versus nontargeting negative-control variance statistical 
analysis. For Extended Data Fig. 8, negative-control sgRNAs were 
subsampled 1,000 times each in increasing increments of ten sgRNAs. 
For each subsample, we performed a Levene’s test against the full set 
of 1,000 of the respective type of negative-control sgRNAs. We then 
calculated the percentage of times that the result of the Levene’s test 
was significant (P < 0.05; that is, the number of times variance between 
the subset and the whole set was statistically different) from the 1,000 
subsamples for each increment. This percentage is the empirical  
P value, such that the black threshold line of P = 0.05 means that out 
of 1,000 subsamples, only 50 had significantly different variances 
compared to the variance of the full set of that respective type of 
negative-control sgRNA.

Promoter-targeting ‘positive-control’ sgRNA selection analysis. For 
Extended Data Fig. 8c, we selected all TSSs provided by the FANTOM5 
database that passed a relaxed Timo TSS classification score of 0.14 
for the genes measured by HCR–FlowFISH. We calculated the average 
effects of the ten closest sgRNAs to each TSS position. Where a TSS 
window was provided, we used the first transcribed base position to 
calculate absolute sgRNA distances. To compare these sgRNAs against 
those provided by genome-wide CRISPRi libraries (Broad Dolcetto49 
and hCRISPRi-v2 (ref. 48)), we selected the sgRNAs whose spacers 
matched those tested in the HCR–FlowFISH screening libraries; the 
sgRNAs from hCRISPRi-v2 follow a G + 19 base spacer convention, so the 
5′-most base from the HCR–FlowFISH spacer sequences was trimmed 
to facilitate spacer sequence matching. Because these libraries often 
provided lower scores than the optimal TSS, we aimed to provide a 
heuristic method of selecting TSS-targeting sgRNAs by selecting the 
TSS with the greatest Pol II ChIP–seq signal (TSS provided by RefGene, 
total Pol II ChIP–seq signal was calculated in a window ±500 bp around 
the TSS) and picking the ten nearest sgRNAs.

Cell coverage/sorting depth titration experiments for HCR–
FlowFISH
HCR–FlowFISH experiments at GATA1 were performed using guide 
libraries, K562 cell lines, transcript detection, sorting and sequencing 
strategies, as previously described9, and following guidelines suggested 
here (Supplementary Information Section 7). To evaluate the effects of 
sampling cell numbers at different levels of complexity, defined as the 
number of observations per number of sgRNAs used, we performed two 
replicates of the GATA1 library and partitioned them into different sort-
ing depths. The same library was sorted into 20×, 50×, 100× and 200× 
the guide library size. To assess the impact of sequencing complexity, 
each sorting strategy was sequenced at a depth of more than 2,000×.

Effect size of each sgRNA was computed using Eq. 1 to under-
weight sgRNAs with low read counts by normalizing read counts by 
their mean:

Mean − normalized log2 (FC)i
= log2 ((1 + [Ai/mean(A)]) /(1 + [Bi/mean(B)]))

(1)

Linear − transformed log2 (FC)i
= log2 ([(1 + Ai)/sum(A)]/[(1 + Bi)/sum(B)])

(2)
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where A and B are each vectors encoding the number of reads for each 
guide in low- and high-sort bins, respectively. Target coordinates for 
each sgRNA were determined by their target PAM coordinates. Coor-
dinates for the GATA1 CREs were obtained using HCR–FlowFISH CASA 
CRE annotation (ENCFF413WYU).

Bootstrap sampling analysis for simulating CRISPR screens 
performed at various sequencing depths
Bootstrap sampling analysis for sequencing depth was performed 
using ENCODE standard guide quantification files, which record the 
number of sequencing reads that map to each sgRNA sequence in a 
given library. Each CRISPR screen comes with two guide quantifica-
tion files. For sorting-based screen approaches (for example, Flow-
FISH), one file quantifies the number of mapped sequencing reads in 
low-expression sorted bins (labeled ‘A’), whereas the other file quanti-
fies those in high-expression sorted bins (labeled ‘B’). For growth-based 
screen approaches, we quantify using samples collected from an earlier 
time point (‘A’) and a later time point (‘B’). To simulate an experiment 
with sequencing depth of d, we sampled with replacement total N  × d 
number of reads independently from each A and B, where N is the num-
ber of distinct sgRNAsNin×da simulate an experiment with sequencing 
depth d, we sampled with replacement total N × d number of reads 
independently from each A and B, where N is the number of distinct 
sgRNAs in a library.

For the CRISPR screens used for the bioreplicate reproducibility 
and dropout analyses, reads were sampled independently for each of the 
two bioreplicates (A1, A2, B1 and B2). sgRNAs that had 0 mapped reads 
in any one of A1, B1, A2 and B2 were excluded from the analyses. At each 
value of d, 100 independent bootstrap samples were generated to be 
used for dropout and bioreplicate reproducibility analyses (Fig. 3f,g).

For the dropout simulation analysis, we defined dropout sgRNAs as 
those that resulted in less than ten sampled reads from either Asampled or 
Bsampled. For bioreplicate reproducibility analysis, we computed Pearson 
correlations of log (FC) effect sizes (log2 [(1 + Asampled)/(1 + Bsampled)]) from 
every pair of bootstrap samples, one coming from bioreplicate 1 and the 
other coming from bioreplicate 2.

Peak caller comparisons
aggrDESeq2. For each experiment, read counts of individual sgRNAs 
for the initial and final time points were obtained from the guideQuant 
files. Differential abundance testing was performed using the DESeq2 
package with default parameters, with contrasts defined such that the 
average log2 (FC) values of sgRNAs more abundant in the final time point 
or high-expressing bin have positive values. Next, 100-bp bins were tiled 
across chromosomes containing perturbations. Coordinates for indi-
vidual sgRNAs were adjusted based on the perturbation modality (Cas9 
cutting: ±10 bp of PAM; dCas9: ±10 bp of PAM; dCas9-KRAB: ±150 bp of 
PAM) and intersected with the bins. For every 100-bp bin, a significance 
value was calculated using Fisher’s method for aggregating P values 
with the unadjusted DESeq2 P values as input. The aggregated P values 
were then FDR adjusted. Significant bins were defined as FDR < 0.01. 
Note that sgRNAs that intersect more than one bin contribute to the 
calculations for all overlapping bins. This was repeated without filtering 
out sgRNAs with GuideScan specificity scores of <0.2. To determine if 
the method was sensitive to outliers, we removed the most significant 
sgRNA per bin and recalculated the bin significance and effect size. For 
the Gitr locus screen, the above process was repeated.

CASA. sgRNA guideQuant files were parsed to provide genomic map-
ping coordinates of the protospacer sequence and raw guide counts 
per experimental condition in the CASA input format. We ran a con-
tainerized deployment (https://hub.docker.com/r/sjgosai/casa-kit; 
version 0.2.3) on the Google Cloud Platform using a wrapper script 
provided in the CASA GitHub repository (https://github.com/sjgosai/
casa). CASA was run using a sliding window of 100 bp in width and step 

size and a ROPE threshold of 0.693 (that is, the default settings). As in 
previous work9, peaks that were supported by at least ten sgRNAs and 
were shared between two bioreplicates were reported.

CRISPR-SURF. sgRNA guideQuant files were parsed according to the 
input format required for CRISPR-SURF (in particular, converting PAM 
coordinates to protospacer coordinates). SURF_count was then run 
with the options -nuclease cas9 -pert crispri to produce an input file 
for deconvolution. SURF_deconvolution was run using the -pert crispri 
option, and the resulting negative_significant_regions.bed was used 
to identify positive regulators of expression with FDR < 0.05. CRISPR_
SURF was run using the provided Docker container using Singularity.

MAGeCK. sgRNA guideQuant files and coordinate expansion 
were performed similar to as described above. One hundred-base 
pair bins were created by taking the first most upstream coordi-
nate position among all sgRNAs in the respective screening library 
and creating 100-bp bins until reaching the most downstream  
sgRNA coordinate position. Expanded coordinate sgRNAs were 
then intersected with the bins. MAGeCK was run using the default 
parameters (–norm-method = median –sort-criteria = negative –
remove-zero = none –gene-lfc-method = median), and only the sig-
nificance values corresponding to the expected effect size direction 
for each screen (negative for the growth screens and positive for the 
FlowFISH screens) were used to calculate significance, which was 
calculated similar to as described above.

RELICS. sgRNA guideQuant files were prepared to provide genomic 
coordinates and raw counts of each sgRNA in the standard input format 
for RELICS. The sgRNAs overlapping promoter regions and exons of 
each target gene were labeled as functional sequences for CRISPRi 
screens and CRISPR–Cas9 screens, respectively. CRISPR systems used 
for each screen were specified for RELICS. The functional sequences 
were then identified for each screen using the default settings for REL-
ICS v.2.0 (min_FS_nr:30, glmm_negativeTraining:negative_control).

Pairwise Jaccard similarity. For each method, peaks were loaded, 
and a set was constructed with all nucleotides in the tiled region called 
significant. For each pair of peak calling methods, the Jaccard similarity 
was computed as

|A⋂B|
|A⋃B|

For the ‘Canonical Elements’, we used the coordinates of the 
GATA1 promoter (hg38 chromosome X: 48786330–48786733), eGATA1 
(chromosome X: 48782816–48783227) and eHDAC6 (chromosome X: 
48800584–48800859).

Effect sizes within peaks. For comparison of the distribution of guide 
effects (log2 (FC)) for the sgRNAs falling within peaks identified by dif-
ferent peak callers, we started by using Eq. 2 to calculate the log2 (FC) 
for each guide. We then picked the sgRNAs that overlapped with the 
called peaks for each analysis tool and plotted the log2 (FC) values of 
the filtered sgRNAs.

Nucleotide overlap with annotations. Peaks identified by differ-
ent CRISPR cCRE callers were intersected with ENCODE (DHS: ENC-
SR000EKS; H3K27ac: ENCSR000AKP) and SCREEN annotations 
(Supplementary Table 18).

Intersection of CRE calls. Significant CRE calls from each peak caller 
were intersected using bedtools multiinter. The output was used to 
generate the UpSet plots using the ‘upset’ function within the R pack-
age UpSetR.
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Comparison of time points
A CRISPRi growth screen with sgRNAs tiling the GATA1 locus (ENC-
SR719QWB) was used to analyze the effect of time point selection. 
CASA peak calls were generated as described above. Relatedly, a CRIS-
PRi HCR–FlowFISH screen at the GATA1 locus (ENCSR917XEU) was 
inspected for dropout due to potential growth effects.

Strand-specific quantification of sgRNA effect sizes
All CRISPR screens used in this analysis had specific gene targets (CRIS-
PRi growth screen tiling across the GATA1 locus and HCR–FlowFISH), 
and their sgRNAs were unambiguously labeled as either template 
strand- or coding strand-targeting sgRNAs depending on which strand 
their protospacers were located relative to the transcriptional direc-
tions of their target genes (Fig. 6a,b). For the GATA1 CRISPRi growth 
screen, sgRNAs were filtered for GuideScan aggregated CFD specificity 
scores of >0.2 to remove sgRNAs with off-target growth effects. We 
then labeled each sgRNA as gene targeting if its PAM sequence was 
located between 2,000 bp downstream of TSS and TES. The 2,000 spac-
ers were used to exclude gene body-targeting sgRNAs that were TSS 
proximal and affected promoter activities. sgRNAs with PAM sequences 
located between 2,000 bp upstream of the TSS and the TSS itself were 
labeled promoter targeting, and all other sgRNAs were labeled ‘outside’  
(Fig. 6c). RefGene annotations were used to identify TSSs and TESs for 
each gene, and for genes with multiple isoforms, isoforms with the 
highest levels of K562 Pol II ChIP–seq signals (ENCFF914WIS, signal  
P values) at both the TSS and TES were used. Based on the results of the 
HCR–FlowFISH screen, it appeared that PVT1 was primarily expressed 
from an alternative TSS in K562 cells. This position overlaps the CRE 
termed e3 in a previous K562 screen10 (but was not included as a TSS 
in RefGene), and we used its position (chromosome 8: 128045692) as 
the TSS of the PVT1 gene for length analyses. Three of 20 HCR–Flow-
FISH experiments were excluded from this analysis (Fig. 6d), as they 
had less than five tested protospacers located within template strand 
promoters, coding strand promoters, template strand gene bodies or 
coding strand gene bodies.

Chromatin accessibility measurement in primary mouse 
regulatory T cells
Chromatin accessibility was measured using the Omni-ATAC protocol63 
on 50,000 sort-purified CD4+Foxp3–GFP+ regulatory T cells that had 
been differentiated in vitro from sort-purified naive CD4+ T cells from 
C57BL/6 mice.

Stain-and-sort screen for Gitr expression in primary mouse 
regulatory T cells
Twelve ATAC-seq peaks within 50 kb of the Gitr (Tnfrsf18) locus in regu-
latory T cells were selected for gRNA design using GuideScan2. The 
resulting gRNAs were filtered to keep those with a specificity score of 
≥0.2, to remove repeats of GGGGG and TTTTT and to restrict guides 
that overlap by more than 5 bp. This left 404 targeting sgRNAs to which 
40 nontargeting gRNAs were added as negative controls.

The gRNA library was cloned into a mouse stem cell virus retroviral 
mU6 promoter-driven expression system using NEBuilder HiFi DNA 
Assembly (New England Biolabs, E2621L). This retrovirus contains a Thy1 
reporter gene under the control of a separate Pgk promoter. gRNA con-
taining retrovirus was produced using the Platinum-E Retroviral Pack-
aging Cell Line (Cell Bio Labs, RV-101) following transient transfection.

Naive CD4+ T cells were then collected from the spleen and lymph 
nodes of Foxp3–eGFP dCas9-KRAB CD4-CRE C576BL/6 mice using 
magnetic selection (Thermo, 8804-6821-74)64. Four mice were used 
as independent biological replicates. Cells were seeded at 0.5 × 106 
cells per ml and cultured in complete RPMI (10% fetal bovine serum, 1% 
penicillin, 1% streptomycin, 1% gentamicin, 1% l-glutamine, 1% HEPES, 
1% sodium pyruvate and 55 nM 2-mercaptoethanol) and activated under 
Th0 conditions (250 ng ml–1 anti-CD3, 1 µg ml–1 anti-CD28, 2 µg ml–1 

anti-interleukin-4 (IL-4) and 2 µg ml–1 anti-interferon-γ). Cells were 
transduced at 24 h with viral supernatant containing 6.66 ng µl–1 poly-
brene and at 900g for 2 h at 30 °C. Cells were then cultured under 
regulatory T cell polarizing conditions (Th0 conditions + 10 ng ml–1 IL-2 
and 10 ng ml–1 human transforming growth factor-β) for 96 h. Live cells 
were stained for viability with e780 (Thermo, 65-0865-14), GITR-PE (BD 
Bioscience, 558140), CD4-e450 (Thermo, 48-0042-80) and THY1.1-APC 
(Stem Cell Technologies, 60024AZ) for 30 min on ice and sorted using 
a Sony SH800Z with a 70-µm chip. At least 40,000 cells were sorted 
from the top and bottom 15% of GITR signal (gating: lymphocytes/live/
singlets/CD4+/THY1.1+/Foxp3–eGFP+/GITRhi/lo). gDNA was recovered 
using a Zymo Quick-DNA Miniprep Plus kit (Zymo, D4068), and gRNA 
was recovered via PCR. Libraries were sequenced on an Illumina MiSeq 
using 20-bp single-end reads.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The genomic and epigenomic annotation files used in this analysis are 
provided in Supplementary Table 4. Accession IDs for public datasets 
used in this study are provided in Supplementary Table 18.
All CRISPR screen datasets used in this study are available in the online 
ENCODE portal, and accession IDs are included in Supplementary Table 1.  
sgRNA counts for the GATA1 titration experiments are provided in 
Supplementary Table 11. The Gitr regulatory T cell screening data can 
be found at https://www.dropbox.com/scl/fo/7q92wt7zyejfkwetsgsr6/
h?rlkey=30ytwfaazty33bz3ez30coiy8&dl=0. Public CSC track hub 
repositories to visualize CRISPR screen data and results are available 
for Figs. 1 (https://data.cyverse.org/dav-anon/iplant/home/joh27/
track_hub_fig1/hub.txt) and 6 (https://data.cyverse.org/dav-anon/
iplant/home/ohjinwoo94/track_hub_fig6/hub.txt).

Code availability
The code for CASA can be found at https://github.com/sjgosai/casa. 
The code for using GuideScan2 to design sgRNAs for all cCREs can be 
found at https://github.com/schmidt73/encode_pipeline. GuideS-
can2 is available with a web interface at https://guidescan.com/. The 
code used for other analyses is available online at https://github.com/
Reilly-Lab-Yale/ENCODE-CRISPR.
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Extended Data Fig. 1 | Integrated analysis of K562 screens nominates 
features of functional CREs. A) The percent of total significant CREs (n = 210) 
that intersect union sets of annotations from ENCODE biosamples and K562 
annotations. B) Upset plot of the intersection of significant CREs with SCREEN 
K562 cCREs, and K562-annotated accessible chromatin regions, histone marks, 
EP300, CTCF, POLR2A, peaks. Blue highlight indicates CREs that intersect all 
features. C) Signal fold change over background for K562 features in CREs 
(n = 210 CREs, colored in green) versus perturbed regions (n = 3213 regions, 

colored in gray). Note each value was increased by 0.01 and then log10-
transformed for visualization. All comparisons except H3K9me3 were significant 
at P value < 0.01 (Two-sided Wilcoxon test P values noted in the plot). Full test 
results and mean and median signal values reported in Supplementary Table 
7. Each box ranges from the first quartile to the third quartile with a line drawn 
at the median. Lines extend to 1.5x the interquartile range and individual dots 
extending beyond this range indicate outliers.
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Extended Data Fig. 3 | Overlapping targets and hits of CRISPR screens at the 
MYC and GATA1 loci. A) Genome browser snapshot of the MYC locus including 
H3K27ac (light gray) and DHS signal (dark gray) in K562 cells. CRISPR screen 
effects (mean log2FC, n = 2 screen replicates) and sgRNA locations (bars) for 
CRISPRi-HCR-FlowFISH (FF) (orange) and Tycko et al. 2019 (ref. 17) CRISPRi-
growth (blue). B) Number of overlapping PAM coordinates across 5 screens in 
the GATA1 and C) MYC loci. D) Pearson correlation for effects of sgRNAs that 
are shared across screens tiling GATA1. Each screen has 2-3 replicates shown as 
squares. E) Percentage of exon (gray, total n = 172, 78, 72 from left to right) or 

K562 DHS targeting guides in the GATA1 locus chrX:48,773,708-48,801,225 (black, 
total n = 322, 153, 158 from left to right) with significantly high log2FC effect sizes 
(Z-test using mean and variance from negative controls p-value < 0.001). Note 
this is a conservative hit threshold, and some DHSs are not expected to affect 
GATA1 expression. F) Guide effects in GATA1 tiling growth screens (Tycko et al. 
2019 (ref. 17)) with different CRISPR modalities. Data is shown only for sgRNAs 
that target a previously-validated GATA1 CRE (colors) or a GATA1 exon (shape). 
Guides are filtered for high-specificity with GuideScan CFD > 0.2 (markers show 
mean log2FC, n = 2 screen replicates).
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Extended Data Fig. 4 | Selecting cCREs and targeting sgRNAs near DHS 
summits. A) Epigenetic feature peak intersections with significant CREs 
identified in 16 HCR-FlowFISH screens. B) Browser track highlighting two 
significant enhancers within FADS2. The K562 All TF ChIP track was created by 
concatenating all ENCODE K562 TF ChIP-seq experiments, and de-duplicating 
non-unique peak calls. The height of the track represents the number of unique 
TFs with peaks at a position. The average effects of each sgRNA from the FADS1 
HCR-FlowFISH screen (n = 2 replicates). C) The effects of all sgRNAs across all 
HCR-FlowFISH screens within 2000 bases of a significant enhancer’s DHS peak 
are plotted, normalized to the average effect of all sgRNAs in their enhancer. 
D) Same as (C), except sgRNAs are separated into 20 bp bins, with the mean 
of the sgRNA’s enhancer-relative effects plotted for each bin; loess regression 
line drawn in blue. E) Comparison of sgRNA selection strategies for K562 HCR 

FlowFISH gene screens (n = 20 loci), separated by gene expression levels (lowly 
expressed ≤ 100 TPM, highly expressed > 100 TPM) or F) gene body lengths 
(shorter gene ≤ 20 kb, longer gene > 20 kb) or. Points reflect the effects of 10 
sgRNAs for significant enhancers, normalized to the mean effect of all sgRNAs 
in that enhancer. ‘Random’ is the average of 100 random subsets from across the 
DHS peak. ‘Distal’ are sgRNAs closest to half the median DHS peak length (179 bp) 
from the summit. Every ‘nth’ sgRNA is selected by arranging sgRNAs in order of 
their PAM’s genomic coordinate, and selecting every nth sgRNA such that their 
ranked orders are evenly spaced. ‘Closest’ sgRNAs are nearest to the DHS summit. 
Boxes show the quartiles, with a line at the median, lines extend to 1.5 times the 
interquartile range, and dots beyond lines show outliers. Significance evaluated 
using Welch’s t-test on each pairwise comparison.
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Extended Data Fig. 6 | The majority of and the strongest significant CREs are 
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analysis. For each CRE’s target gene, it was determined if the consensus RefSeq 
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Extended Data Fig. 7 | Power related to sgRNAs per element and impact of 
sgRNA specificity and sequence. A) The power to detect significant effects 
on gene expression as a function of the number of sgRNAs targeting each 
element and the effect size of that element. Power was computed by simulations 
based on the average sgRNA effects from three biological replicates of GATA1 
CRISPRi-FlowFISH data, where the individual sgRNA effects in the eGATA1 
element were scaled such that the average adjusted effect of all sgRNAs in the 
enhancer was 10-50% of the promoter, in steps of 10%. B) Power analysis for 
detecting significant effects as a function of the number of sgRNAs targeting 
the Gitr enhancer chr4:156021490-156022916. Simulations were based on the 
average sgRNA effects from four biological replicates of the GITR-staining 
Sort-seq experiment. C) sgRNA PAM distance to DHS summits compared with 
GuideScan CFD specificity scores, for all GuideScan sgRNAs in HCR-FlowFISH 

identified CREs that intersect DHS and H3K27ac peaks. Horizontal dashed line 
indicates GuideScan CFD specificity threshold of 0.2. D) Enrichment of sgRNAs 
with significant effects among sgRNAs with low specificity scores (GuideScan 
CFD < 0.2) in regions at least 1 kilobase away from any DHS peak in K562 cells 
for the indicated screens. The p-value from Fisher’s exact test is shown for each, 
and the significant (p < 0.05) bar is colored. E) Distribution of sgRNA effects 
normalized to the average effect of all sgRNAs in their respective CREs, for 
sgRNAs with spacers that do or do not contain a ‘TTTT’ U6 termination sequence, 
using sgRNAs that target significant enhancers that intersect DHS and H3K27ac 
peaks. Boxes show the quartiles, with a line at the median, lines extend to 1.5 
times the interquartile range, and dots show outliers. TTTT-containing sgRNA 
n = 195; Non TTTT-containing sgRNA n = 3940 (Welch’s t-test P value = 1.7e-4).
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Extended Data Fig. 8 | Evaluating methods of selecting negative and positive 
control sgRNAs. A) Boxplot of subsample variances for negative control sgRNAs 
in the CD164 HCR-FlowFISH screen, in increments of 100 sgRNAs subsampled 
1000 times each from a total of 1000 sgRNAs for each type of negative control 
sgRNA. Each type of negative control was subsampled separately. Boxes show 
the quartiles, with a line at the median, lines extend to 1.5 times the interquartile 
range, and dots show outliers. B) Empirical P values from Levene’s test on 
subsampled negative control sgRNAs, in increments of 10 sgRNAs subsampled 

1000 times, compared to the entire set of the respective type of negative control 
sgRNA. P = 0.05 threshold is indicated by the black line. C) Comparison of the 
average effect from both biological replicates of the 10 sgRNAs closest to the 
FANTOM5- and refGene-nominated TSSs for the HCR-FlowFISH genes against the 
sgRNAs provided by the Dolcetto or the hCRISPRi-v2 libraries, which may target 
one or more of these–or distinct–TSSs. Each point reflects an individual TSS (for 
the FANTOM5 and refGene TSSs) or the set of 4-10 sgRNAs from the Dolcetto or 
hCRISPRi-v2 libraries that were tested in the HCR-FlowFISH screens.
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Extended Data Fig. 9 | Representative bootstrap samples for low and high 
sequencing depths using K562 GATA1 locus CRISPRi growth screen. A) 
Biological replicate 1 log2FC vs Biological replicate 2 log2FC (Z-score) for 30x 
bootstrapped sequencing depth (9977 sgRNAs, R = 0.45). B) Biological replicate 
1 log2FC vs Biological replicate 2 log2FC for 300x (R = 0.73). C) Empirical 

cumulative distribution function of sgRNA read counts across the library for 
samples at 30x (red) or 300x (blue) bootstrapped sequencing depth (vertical 
dashed line: read count = 10). D) Dropout plot showing sgRNAs ranked by read 
counts at 30x (red) and 300x (blue) bootstrapped sequencing depth.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | CRISPRi strand bias in the gene body. A) CRISPRi 
effects shown relative to the position of the TSS and transcription end site (TES). 
The TES is defined as the end of the transcript in UCSC RefGene (hg38). Points 
show average normalized sgRNA effect (n = 2 replicates). B) sgRNA effects in 
growth tiling screens using other modalities (CRISPRa, dCas9, or Cas9). Promoter 
refers to sgRNAs that are between the TSS and 2000 bp upstream of the TSS. 
Outside defined as outside the gene body, promoter, and K562 DHS peaks. P 
values show T-test for the comparison across strands. Boxes show the quartiles, 
with a line at the median, lines extend to 1.5 times the interquartile range, and 
dots show outliers (left to right: n = 2027, 1731, 35, 28, 101, 77 sgRNAs). C) CRISPRa 
and Cas9 tracks show the average of two biological replicates, comparing Day 21 
to plasmid. D) Gene length compared with strand bias, defined as the difference 
between the median effect of coding strand-targeting and median of template 
strand-targeting sgRNAs. sgRNAs between the TES and 2000 bp downstream 

of the TSS are included, and genes less than 2000 bp are excluded (n = 17 loci 
with 2 replicates each). E) Strand bias similarly compared with expression level 
from RNA-seq in K562 cells (n = 20 loci). F) Points show the average effect of all 
sgRNAs targeting the promoter (n = 19 promoters with 2 replicates). G) sgRNA 
effects in a CRISPRi FlowFISH tiling screen for FADS2 regulatory elements. The 
two intronic CREs are defined as 500 bp windows centered on CASA peak calls 
and are annotated in Fig. 6b (left to right: n = 2105, 1935, 107, 126, 32, 26, 27, 19, 
1940, and 1786 sgRNAs). H) Strand bias at a CRE within the gene body in a CRISPRi 
tiling HCR-FlowFISH screen of the NMU locus. I) Points show average effects of all 
sgRNAs targeting a CRE, defined as a 500 bp region centered on a K562 DHS that 
overlaps a CASA peak and is outside of the promoter (n = 2 replicates). CREs with 
≥5 sgRNAs are included. Strand is defined with respect to the target gene (which 
may not correspond with transcriptional status of intergenic regions).

http://www.nature.com/naturemethods






μ

ɑ
ɑ ɑ ɑ

β


	Multicenter integrated analysis of noncoding CRISPRi screens

	Results

	The ENCODE noncoding CRISPR database reveals CRE features

	CRISPR screen results are reproducible in validation experiments

	Integrated CRISPR screen analysis informs design guidelines

	Cell and sequencing coverage impact CRE and sgRNA detection

	CASA provides more conservative CRE calls than other methods

	Perturbation dynamics affect screen sensitivity

	CRISPRi effects in the gene body are strand specific


	Discussion

	Online content

	Fig. 1 The ENCODE noncoding CRISPR screening database.
	Fig. 2 Integrated analysis of noncoding CRISPR screens provides guidelines for selecting cCRE targets and sgRNAs.
	Fig. 3 Cell coverage and sequencing depth impact reliable detection of CREs.
	Fig. 4 CRISPR screen analysis tools identify CREs with varying selectivity.
	Fig. 5 Perturbation dynamics impact screen sensitivity and resolution.
	Fig. 6 CRISPRi effects in the gene body are strand specific.
	Extended Data Fig. 1 Integrated analysis of K562 screens nominates features of functional CREs.
	Extended Data Fig. 2 Features of functional CREs in iPSCs.
	Extended Data Fig. 3 Overlapping targets and hits of CRISPR screens at the MYC and GATA1 loci.
	Extended Data Fig. 4 Selecting cCREs and targeting sgRNAs near DHS summits.
	Extended Data Fig. 5 A stain-and-sort screen for GITR expression in primary mouse Regulatory T-cells.
	Extended Data Fig. 6 The majority of and the strongest significant CREs are within the same TAD as their target gene.
	Extended Data Fig. 7 Power related to sgRNAs per element and impact of sgRNA specificity and sequence.
	Extended Data Fig. 8 Evaluating methods of selecting negative and positive control sgRNAs.
	Extended Data Fig. 9 Representative bootstrap samples for low and high sequencing depths using K562 GATA1 locus CRISPRi growth screen.
	Extended Data Fig. 10 CRISPRi strand bias in the gene body.




