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SUMMARY

CDS8T cells play an essential role in defense against viral and bacterial infections and in tumor immunity. De-
ciphering T cell loss of functionality is complicated by the conspicuous heterogeneity of CD8 T cell states
described across experimental and clinical settings. By carrying out a unified analysis of over 300 assay
for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) experiments
from 12 studies of CD8 T cells in cancer and infection, we defined a shared differentiation trajectory toward
dysfunction and its underlying transcriptional drivers and revealed a universal early bifurcation of functional
and dysfunctional T cell states across models. Experimental dissection of acute and chronic viral infection
using single-cell ATAC (scATAC)-seq and allele-specific single-cell RNA (scRNA)-seq identified state-spe-
cific drivers and captured the emergence of similar TCF1* progenitor-like populations at an early branch
point, at which functional and dysfunctional T cells diverge. Our atlas of CD8 T cell states will facilitate mech-

anistic studies of T cell immunity and translational efforts.

INTRODUCTION

Upon completing their differentiation in the thymus, mature naive
T lymphocytes enter the periphery and recirculate through sec-
ondary lymphoid organs, where, upon an encounter with a
cognate antigen in the presence of co-stimulatory molecules,
they become activated, expand, and differentiate into effector
or memory T cells. These cells then take up residence in
lymphoid and non-lymphoid organs, where they exert their im-
mune functions. In contrast, chronic or suboptimal antigenic
stimulation (e.g., in the absence of co-stimulation) can result in
a state of hypo-responsiveness or anergy (Murphy and Weaver,
2016). Over the last decade, this simple textbook view has
evolved into a markedly more nuanced and complex picture of
T cell differentiation, with a plethora of seemingly distinct states
emerging from a large number of studies in mice and man (Fan
and Rudensky, 2016; Jameson and Masopust, 2018; Kumar
etal., 2018). CD8 T cells, whose function is essential for defense
against viral and bacterial infections and for tumor immunity,
serve as a case study in this regard. Phenotypic and functional
analyses of CD8 T cells in acute and chronic viral infections,

L))

cancer, transplantation, and “self” tolerance in both experi-
mental animal models and in human patients have offered
numerous descriptions of activated effector, long-lived central,
and short-lived effector memory cells and their precursors, as
well as an array of CD8 T cell states with perturbed functionalities
dubbed anergic, exhausted, and reversibly or irreversibly
dysfunctional. Recent characterization of a small subset of ex-
hausted/dysfunctional cells, named “stem-cell-like” or progeni-
tor cells and capable of self-renewal, adds further complexity to
the topography of CD8 T cell activation and differentiation
(McLane et al., 2019; Hashimoto et al., 2018; Blank et al., 2019).

Studies of CD8 T cell dysfunctional states, besides being high-
ly significant for understanding basic mechanisms of adaptive
immunity, have attracted particular attention due to the realiza-
tion that prevention or reversal of CD8 T cell dysfunction can
serve as a potent strategy for the treatment of both solid organ
and hematologic malignancies and chronic infections. Inefficient
mobilization of endogenous CD8 T cell responses or a failure to
engage them in cancer patients in response to checkpoint
blockade inhibitors, as well as disease resistance or relapse
following adoptive CD8 T cell therapies including CAR (chimeric
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antigen receptor) T cells, has been attributed to a large degree to
dysfunction or exhaustion of tumor- and virus-specific CD8
T cells (Ribas and Wolchok, 2018; Sharma et al., 2017; Kallies
et al., 2020). Transcriptional and chromatin features associated
with these states have been extensively explored through the
analyses of epigenomes and transcriptomes of isolated subsets
of functional and dysfunctional CD8 T cells using DNase | hyper-
sensitive sites sequencing (DHS-seq), assay for transposase-
accessible chromatin using sequencing (ATAC-seq), and RNA
sequencing (RNA-seq) and through single-cell transcriptomics
and proteomics (Pauken et al., 2016; Sen et al., 2016; Scott-
Browne et al., 2016; Philip et al., 2017; Mognol et al., 2017;
Chen et al., 2019a, 2019c; Scharer et al., 2017; Utzschneider
et al., 2016; Man et al., 2017; Miller et al., 2019; Brummelman
et al., 2018; Bengsch et al., 2018; Yao et al., 2019; Beltra et al.,
2020; Yu et al., 2017). These studies have significantly advanced
the knowledge of CD8 T cell differentiation and highlighted pro-
nounced changes in T cell chromatin states. However, the
remarkable heterogeneity of CD8 T cell states revealed by these
genome-wide analyses in diverse experimental and clinical set-
tings poses a major problem of distinguishing between common
and context-specific features of differentiation toward dysfunc-
tion and underlying regulatory mechanisms. For example, in
chronic viral infection, T cells encounter antigen in an inflamma-
tory and stimulatory context and have been described as pro-
gressing through an effector state prior to differentiating to a
state often called exhaustion (Wherry and Kurachi, 2015). Mean-
while, a two-step process of differentiation from a reversible to
an irreversible dysfunctional state was reported in studies,
including our own, in the setting of early tumorigenesis, where
naive tumor-specific T cells encounter antigen in a non-inflam-
matory setting that may result in inadequate priming or activation
(Philip et al., 2017; Philip and Schietinger, 2019). Therefore, in
addition to inconsistent terminology (i.e., exhaustion versus
dysfunction), it is unclear how to reconcile different models of
progression to dysfunction (the term we will use here) and how
these differentiation programs give rise to two distinct states at
late time points of chronic antigen exposure: self-renewing
dysfunctional progenitors and terminally dysfunctional cells.

A vexing obstacle in addressing these issues has been the
inability to directly compare genome-wide data from different
studies due to technical sources of variation—including sample
preparation, sequencing quality, batch effects, and cell
numbers—making meaningful integration of massive amounts
of data generated in mouse and human studies problematic.
To address this challenge, we carried out a uniform reprocessing
and a statistically principled batch effect correction approach to
over 300 chromatin accessibility (ATAC-seq) and gene expres-
sion (RNA-seq) datasets generated in 12 independent studies
of CD8 T cell states observed across experimental mouse
models of acute and chronic infection and tumors. Our analysis
revealed a universal signature of chromatin accessibility
changes in the progression to terminal dysfunction in both tu-
mors and chronic infection, implying early commitment to a
dysfunctional fate in all settings of chronic antigen exposure.
The chromatin state observed at early time points during the
development of dysfunction was similar to that of dysfunctional
progenitor cells found in late time points in infection and tumor
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models. Motif-based regression modeling of this unified chro-
matin accessibility compendium enabled inference of state-spe-
cific transcription factor (TF) activities and implicated new fac-
tors in the progression to terminal dysfunction. This bulk-level
T cell state analysis suggested a universal early bifurcation of
functional and dysfunctional T cell activation states across
models of cancer and chronic infection.

We further characterized this early branch point by carrying
out single-cell analysis of CD8 T cell populations in the context
of acute and chronic lymphocytic choriomeningitis virus
(LCMV) infection and observed a TCF1* progenitor-like popula-
tion resembling the memory precursor effector cell (MPEC) pop-
ulation in acute infection. Regression modeling of single-cell
ATAC (scATAC)-seq clusters enabled refined association of
T cell functional states with the activity of TFs, whose causal
role was established through a comprehensive single-cell RNA
(scRNA)-seq atlas in T cell populations from F1 hybrid mice
combining evolutionary distant genomes of laboratory and
wild-derived mouse strains.

Together, these results provide new insights into the early
emergence of a progenitor-like population in response to chronic
antigen stimulation that appears to precede the establishment of
dysfunction-committed progenitor cells, elucidating recent
reports (Utzschneider et al., 2020; Chen et al., 2019c) with rich
single-cell characterizations. Our unified atlas of CD8 T cell
chromatin and expression states across mouse models and sin-
gle-cell analyses of the bifurcation between functional and
dysfunctional T cell responses will provide a valuable resource
to the community and facilitate further mechanistic and transla-
tional studies.

RESULTS

Dysfunctional T cells in tumors and chronic infection
share a common epigenetic and transcriptional
state space
We collected 166 chromatin accessibility (ATAC-seq) datasets
(Figure 1A; Table S1) from 10 recent studies on CD8 T cell func-
tion in mouse models of infection and cancer. These encom-
passed T cells in settings of acute bacterial infection, acute
and chronic viral infection, including memory precursor and tis-
sue-resident memory cells, and tumor-infiltrating lymphocytes
in hepatocarcinoma and melanoma models. The data included
endogenous T cells and adoptively transferred CAR-T cells; T
cells with and without treatment with anti-PD1 immunotherapy;
and progenitor T cell populations isolated from various models
of chronic antigen stimulation (Pauken et al., 2016; Sen et al.,
2016; Scott-Browne et al., 2016; Scharer et al., 2017; Mognol
et al., 2017; Philip et al., 2017; Chen et al., 2019a; Miller et al.,
2019; Milneretal.,2017; Yuetal., 2017). We performed a uniform
processing of these data to construct a high-resolution atlas of
129,799 reproducible chromatin accessibility peaks across
CD8 T cell states; these peaks were further split into 221,054
subpeaks and associated to genes (Method details; Table S2).
Expectedly, principal-component analysis (PCA) of peak read
counts clustered samples by data source (Figure S1A). We
therefore applied a generalized linear model (GLM) accounting
for data source and functional state (naive, functional,
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Figure 1. Dysfunctional CD8 T cells in tumors and chronic infection share a common chromatin state space

(A) Snapshot of the ATAC-seq compendium near the Pdcd1 locus (light gray bars, peaks; dark gray bars, peak summit regions).

(B) PCA of batch-effect-corrected ATAC-seq signal in peak summit regions (functional cell state, color; data source, shape).

(C) First principal component (PC1) of PCA for batch-effect-corrected ATAC-seq signal in dysfunctional T cells from different studies (shown separately below) for
peaks differentially accessible between progenitor and terminally dysfunctional cells in chronic LCMV infection.

(D) Differential accessibility and differential expression between progenitor and terminally dysfunctional T cells in chronic LCMV infection and in melanoma, and
between early and late states of dysfunction in hepatocarcinoma progression. Left: batch-effect-corrected ATAC-seq signal log2 fold change for peaks of
significantly differentially accessible genes; right: log2 fold change of RNA-seq gene expression (color for significantly decreased/increased individual peaks or
genes; FDR < 0.05).

See also Figures S1 and S2 and Tables S1, S2, and S3.

dysfunctional; see Method details). After this batch effect correc-  clustered into broad functional categories regardless of the
tion, distances between functionally related samples from data source (Figure 1B). A more conservative GLM correction
different studies decreased (Figure S1B), and samples readily that did not explicity model differences between functional
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and dysfunctional cells produced similar results (Figure S1C).
Furthermore, naive cells across studies clustered together in
the PCA plot, while effector and memory cells (as well as pre-
activated cells injected in melanoma-bearing mice, but ignorant
of the tumor antigen) formed a cluster of functional cells. Inter-
estingly, cells profiled at day 4 in acute infection (Scharer et al.,
2017) were positioned between clusters of naive and functional
cells, suggesting their intermediate state. Strikingly, the chro-
matin states of dysfunctional tumor-infiltrating T cells from
different tumor models and T cells in chronic viral infection
formed a distinct cluster, suggesting a universal program of
T cell dysfunction across models and immune challenges. A
similar analysis of 136 gene expression (RNA-seq) datasets
from eight studies (Pauken et al., 2016; Scott-Browne et al.,
2016; Man et al., 2017; Utzschneider et al., 2016; Miller et al.,
2019; Mognol et al., 2017; Philip et al., 2017; Chen et al,,
2019a) showed consistent results (Figure S1D; Tables S1 and
S2). Differential expression between functional and dysfunc-
tional cells was significantly correlated with differential accessi-
bility (Figure S1E). This confirmed that dysfunctional T cells are
epigenetically and transcriptionally similar in the settings of
chronic infection and across tumor models.

Genes with the strongest differential accessibility between
functional and dysfunctional cells at their promoter, intronic,
and nearby intergenic peaks (Method details) included well-
known markers of T cell activation, cytotoxicity, adhesion, and
apoptosis, as well as those encoding key TFs, cytokines and
cytokine receptors, and other cell-surface and intracellular pro-
teins (Figure S1F; Table S2). Consistent with global differential
accessibility and expression correlation (Figure S1E), differential
accessibility of individual genes was often associated with signif-
icant differential expression (Figure S1F). Differential accessi-
bility between naive or memory and dysfunctional CD8 T cells
in mouse models was significantly associated with orthologous
changes in human donors and cancer patients, suggesting
generalizability to the human context (Figure S1G; Table S3;
Method details).

Thus, our integrative accessibility and expression analyses
across our compendium (Table S2) identified a high-confidence
universal epigenetic and transcriptional gene signature of T cell
dysfunction.

T cell temporal progression in tumors and chronic
infection mirrors the state change from progenitor to
terminal dysfunction
Dysfunctional T cells profiled as early as days 5-8 (d5-8) after
antigen encounter in tumor or chronic viral infection models clus-
tered closely with terminally dysfunctional cells profiled at d22-35
rather than with effector or memory cells (Figures 1B and S1D).
Cells characterized as progenitor dysfunctional cells in different
studies also clustered with terminally dysfunctional cells. This sug-
gested that T cells adopt a dysfunctional rather than an effector
chromatin state as early as d5 after antigen encounter.

We next compared chromatin states of different dysfunctional
T cell subsets across models and immune challenges. Differen-
tially accessible peaks between progenitor and terminally
dysfunctional cells, including endogenous or transferred CAR-
T cells in melanoma or dysfunctional cells in chronic viral infec-

2480 Molecular Cell 81, 2477-2493, June 3, 2021

Molecular Cell

tion, were consistent between models and displayed concordant
changes between early (d5-8) and late (d22-35) states of
dysfunction in chronic viral infection and hepatocarcinoma
tumorigenesis (Figures 1C and S2A-S2C; Table S2). Changes
in accessibility between early and late dysfunctional states,
and between progenitor and terminally dysfunctional states,
correlated with changes in gene expression (Figure S2D). Impor-
tantly, T cells at early time points in all mouse models were
similar in bulk chromatin state to progenitor dysfunctional cells,
a subpopulation sorted from late time points in chronic viral
infection or tumors. Differential accessibility between progenitor
and terminally dysfunctional CD8 T cells in the melanoma mouse
model was significantly associated with that in tumor infiltrating
lymphocytes from melanoma patients (Sade-Feldman et al.,
2018), again supporting generalizability to human data (Fig-
ure S2E; Table S3; Method details). These analyses suggested
a common axis of differentiation of T cell dysfunction across
models and immune challenges.

Many individual genes displayed similar expression and chro-
matin accessibility changes across models along this common
differentiation axis (Figure 1D; Table S2). For example, genes en-
coding markers of terminal dysfunction Entpd1 (Cd39), 2B4
(Cd244), and Cd38 were significantly more accessible in terminal
dysfunction and late tumor-specific dysfunction, while genes en-
coding progenitor cell markers Cxcr5, Slamf6, and IL7Ra chain
were significantly more accessible in progenitor and early
dysfunctional cells. Additional genes encoding cell-surface pro-
teins, such as CD9, CD200, TNFRSF25 (DR3), CD83, and CD69,
were significantly more accessible and expressed in progenitor
cells and could serve as candidate progenitor cell markers.
The locus of the TF 1d2 was more accessible in terminal/late
dysfunction, while Id3, Tcf7, Lef1, Nfkb1, Pou2f2, and Pou6f1
were more accessible in progenitor or early dysfunctional cells,
implicating multiple TFs in the establishment and maintenance
of these states. In most cases, differential accessibility at individ-
ual genes in early/progenitor versus late/dysfunctional states
was associated with differential expression, consistent with
overall correlation of differential expression and accessibility
(Figure S2D). However, our joint analysis did recover context-
specific features, including accessibility and expression patterns
associated with T cell activation in chronic viral infection
compared to tumor contexts (Figure S2D).

Tox and lkzf2, whose heightened expression was previously
associated with terminal dysfunction, were indeed significantly
more accessible and highly expressed in terminal than in early
T cell dysfunction during hepatocarcinoma tumorigenesis; how-
ever, both loci had many peaks significantly more accessible in
progenitor cells, and Ikzf2 was significantly overexpressed in pro-
genitor cells both in chronic LCMV infection and melanoma, sug-
gesting the activity of these TFs in progenitor cells (Figure 1D).

Thus, our analysis identified universal markers and TFs asso-
ciated with T cell differentiation toward dysfunction across
models and organisms.

Coordinated activity of many TFs characterizes
functional and dysfunctional T cell states

We next sought to identify TFs associated with different T cell
activation and differentiation states, particularly the progenitor
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Figure 2. Predictive modeling identifies TFs associated with progenitor dysfunctional CD8 T cells

(A) Schematic of the negative binomial GLM to infer TF associations with chromatin accessibility.

(B) Inferred TF motif coefficients (with the highest variance across conditions, Z score row normalized) from each sample, consolidated between replicates across
studies (median over replicates; error bars, 95% confidence intervals around median).

(C) Inferred TF motif coefficients with the highest variance across dysfunctional states (Z score row normalized).

(D) Network of predicted regulatory interactions between TFs in progenitor dysfunctional T cells (binding motifs not available for TOX and IKZF2, yellow).

See also Figure S3.

cells. We analyzed TF targets, as predicted by TF binding motifs,
and used negative binomial regression with ridge regularization
to predict absolute levels of chromatin accessibility (ATAC-seq
read coverage) in peaks from TF motif scores for each sample
(Figures 2A, S3A, and S3B; Method details). For this analysis,
we focused on 105 motifs for TFs expressed in CD8 T cells after
grouping TFs with indistinguishable motifs. Using coefficients of
the regression models, we estimated the effect on accessibility

of each TF in each sample. This allowed us to map chromatin
accessibility profiles into a lower-dimensional inferred TF activity
space, largely preserving the relationships between samples
(Figure S3C).

In order to identify TFs most strongly associated with T cell
functional states, we consolidated the inferred TF activities
across replicates and studies (Figure 2B). For example, as ex-
pected, the Eomes/Tbx21 motif was associated with low
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accessibility in naive cells and high accessibility in all antigen-
experienced cells, and the Lef1/Tcf7 motif was associated with
high accessibility in naive cells and low accessibility in terminally
dysfunctional cells (Figure 2B). Nrda, Nfkb, Nfat, Pou, and AP1
family motifs were strongly associated with high accessibility in
early dysfunctional and progenitor cells, as opposed to termi-
nally dysfunctional, naive, or functional cells, while Zfp143 and
Zfp523 motifs were associated with high accessibility in terminal
dysfunction (Figures 2B and 2C); this included both previously
(Chen et al., 2019a; Philip et al., 2017; Doering et al., 2012; Im
etal., 2016; Beltra et al., 2020) and newly identified factors. Inter-
estingly, Ctcf motifs were associated with differential accessi-
bility between conditions (Figures 2B and 2C), suggesting
changes in chromatin looping between T cell functional states
(Johanson et al., 2019; Splinter et al., 2006); consistently, we
observed a significant relationship between differential accessi-
bility and differential expression when associating ATAC-seq
peaks to genes using chromatin loops defined using published
Hi-C data in naive CD8 T cells (He et al., 2016) instead of our
default approach (Figure S3D; Method details). Overall, motif-
based regression modeling of ATAC-seq data was a powerful
approach for associating candidate TFs with T cell functional
states.

Inferred TF activities across all antigen-experienced cells were
highly correlated, potentially suggesting coordinated regulatory
programs in different functional states; importantly, correlated
TFs generally had different motifs and were bound at different
sites (Figure S3E). Many TFs expressed in progenitor dysfunc-
tional cells had multiple predicted binding sites in loci encoding
other TFs, including Tox and lkzf2, for which we did not have a
motif, and thus could potentially regulate their expression (Fig-
ure 2D). This suggested that the coordinated and hierarchically
organized activity of a broad range of TFs may be required for es-
tablishing and maintaining T cell functional states, as opposed to
a single “master regulator.”

Single-cell chromatin accessibility analysis reveals the
early emergence of a progenitor-like T cell population
Our integrative analysis of bulk ATAC-seq data found an early
(d5-8) divergence of CD8 T cells between responses to acute
and chronic immune challenges (Figure 1B) and showed that
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plastic and reprogrammable cells early (d7-8) in the develop-
ment of T cell dysfunction were more similar to immuno-
therapy-responsive progenitor dysfunctional cells identified
at later (d20-35) time points than to terminally dysfunctional
cells (Figure 1C). To better characterize chromatin states of
the early divergence between functional and dysfunctional
fates, we performed scATAC-seq analysis of the total splenic
CD8 T cell compartment in mice at d7 upon infection with
LCMV Armstrong (Arm), resulting in acute infection, and
LCMV clone 13 (CI13), resulting in chronic infection
(Figure 3A).

We first constructed a combined atlas of 189,281 chromatin
accessibility peaks including both the bulk ATAC-seq data
peak atlas and 59,482 newly identified scATAC-seq peaks (Table
S4). Quantification and filtering yielded 4,767 and 5,865 cells,
with 12,598 and 13,195 median reads per cell, initially isolated
from Arm- and Cl13-infected mice, respectively. Normalization
using term frequency-inverse document frequency (TF-IDF),
dimensionality reduction using PCA followed by uniform mani-
fold approximation and projection (UMAP), and Louvain clus-
tering (Method details) suggested that d7 responses to infection
with the two LCMV clones were heterogeneous and overlapping
(Figures 3B, 3C, S4A, and S4B).

To characterize functional features of d7 cell populations, we
scored scATAC-seq data with epigenetic signatures derived
from bulk ATAC-seq data (Figures 3D, S4C, and S4D; Method
details) and used single-sample gene set enrichment analysis
(ssGSEA) to associate scATAC-seq cell clusters with the bulk
ATAC-seq data compendium (Figure 3E; Method details). We
found that cells in clusters 0, 7, 9, 11, 12, and 14 were likely a
mixture of naive and background-activated memory cells not
specific to the LCMV antigen, while clusters 1-6, 8, 10, and 13
likely consisted of LCMV responding cells. Some clusters
showed no strong bias between LCMV clones, but we also found
differences (e.g., in clusters 1 and 6) (Figures 3E, 3F, and S4E),
suggesting a clear divergence between responses to Arm and
CI13 as early as d7 post-infection.

To validate and refine our bulk TF analyses (Figures 2 and 1D),
we applied the same motif-based predictive modeling to the
pseudo-bulk signal aggregated from each scATAC-seq cluster,
separately for acute and chronic infection. This identified TFs

Figure 3. scATAC-seq analysis reveals heterogeneity and overlapping but divergent CD8 T cell responses to acute and chronic immune chal-

lenges

(A) Experimental setup.
(B) UMAP of TF-IDF-transformed scATAC-seq data.
(C) Louvain clustering of scATAC-seq data.

(D)

(

score row normalized).

Single-cell heatmap showing the naive cell signature from bulk ATAC-seq data.
E) Association by ssGSEA of batch-effect-corrected bulk ATAC-seq data with normalized cluster-aggregated scATAC-seq signal in each of the two samples (Z

(F) Fraction of cells in each sample that belong to each cluster (restricted to clusters 1-8, 10, and 13).
(G) Inferred TF motif coefficients (with the highest variance, Z score row normalized) for cluster-aggregated scATAC-seq signal (for clusters 1-8, 10, and 13) in

each of the two samples.

(H) Progenitor dysfunctional signature derived from bulk ATAC-seq data scored in scATAC-seq data for cells in clusters 1-8, 10, and 13 (single-cell heatmap, top;

violin plot for cluster-aggregated signal, bottom).

() Genome browser tracks for selected peaks. Bulk ATAC-seq for progenitor and terminally dysfunctional cells and for terminal MPECs. Cluster-aggregated

scATAC-seq for clusters 1-8 and 10.

(J) Progenitor dysfunctional and MPEC signatures derived from bulk ATAC-seq data scored in cells from cluster 10 in acute and chronic infection (Mann-Whitney

U test).
See also Figures S4 and S5 and Table S4.
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most strongly associated with functional states in early response
to acute or chronic infection (Figures 3G and S4F).

Cells in cluster 10, when compared with bulk ATAC-seq data,
were most similar to progenitor dysfunctional cells profiled at late
chronic infection (Figures 3E and 3H; Method details), suggest-
ing the presence of a progenitor-like state early in infection by
CH3 (Utzschneider et al., 2020). Surprisingly, cluster 10 also
contained a small number of cells from acute infection that
were similar to memory precursor cells (Joshi et al., 2007; Vod-
nala et al., 2019) based on comparison with bulk ATAC-seq
data (Figures 3F, 3H, S4E, S5A, and S5B). Cluster 10 cells
from acute and chronic infection displayed similar genome-
wide chromatin accessibility profiles (and thus clustered
together); TF activities via enrichment of Lef1/Tcf7, Nrda, Nfkb,
Nfat, Pou, and AP1 family motifs (Figure 3G); and accessibility
at genes important for T cell activation and function, including
progenitor marker Cxcr5 and dysfunction marker Tox (Figures
3l and S5A-S5C), consistent with bulk ATAC-seq analysis
(Figures 1D, 2B, and 2C). This shared cluster suggested that pro-
genitor-like cells, by analogy to memory precursor cells, are es-
tablished as early as at d7, as recently reported (Miller et al.,
2019; Beltra et al., 2020; Utzschneider et al., 2020). Furthermore,
employing epigenetic signatures from mice enabled a character-
ization of progenitor dysfunctional T cells in human tumors using
scATAC-seq data (Satpathy et al., 2019) (Figures S5D-S5G;
Method details). However, we also observed differential accessi-
bility between the progenitor-like cells in chronic and acute
infection (Figures 3J and S5C) and potentially different TF activity
(Figure 3G), suggesting an even earlier divergence between
functional and dysfunctional fates.

By complementing our bulk ATAC-seq analysis across
models, scATAC-seq analysis characterized the early diver-
gence between CD8 T cell chromatin states in response to acute
and chronic immune challenges, identified progenitor-like sub-
populations in acute and chronic infection, and implicated cell-
state-specific TFs.

Single-cell transcriptional analysis confirms a
progenitor/precursor T cell population in early response
to both acute and chronic infection

To further explore the heterogeneity and temporal progression of
CD8 T cell responses at single-cell resolution and to validate our
state-specific TF predictions through allele-specific analyses,
we performed scRNA-seq analysis of CD8 T cells from hybrid
mice generated upon breeding C57BL/6J and SPRET/EiJ mice
(F1[B6xSpret]) at three time points during acute and chronic
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LCMYV infection (Figures 4A and S6). This approach takes advan-
tage of widespread natural genetic variation (~40 million SNPs)
between the evolutionary distant parental genomes and assess-
ing its effect on gene expression and chromatin accessibility. Vi-
rus-specific T cells were profiled before infection (d0) and upon
activation at d7 and d40 during the acute LCMV infection, and
activated CD62L-negative cells were profiled at d7 and d35 dur-
ing the chronic LCMV infection. Cells isolated from chronically in-
fected B6 mice at d35 were used as a control. Bulk ATAC-seq
profiling of CD8 T cells at d0, d7, and d60 upon acute LCMV
infection in F1(B6xSpret) mice (van der Veeken et al., 2019)
confirmed their consistency with the counterparts from B6
mice (Figure S7A).

After scRNA-seq filtering steps (Method details), our dataset
consisted of 9,822 genes profiled in 24,400 cells, ranging from
3,419 to 4,824 cells per sample, with median 1,147 expressed
genes per cell. UMAP embedding and Louvain clustering re-
vealed a well-separated naive state and diverging phenotypic
arms in acute and chronic responses with heterogeneity within
each sample and gradients of expression of well-known T cell
function markers potentially reflecting differentiation trajectories
(Figures 4B-4D, S7B, and S7C). Cells at d35 in chronic infection
from B6 and F1(B6xSpret) mice were highly similar (Figures 4B—
4D, S7D, and S7E). Dimension reduction using other well-known
methods produced similar results (Figures S7TF-S7H).

We used a combination of complementary approaches to
functionalize the scRNA-seq data (Figures 4E, 4F, S8, and
S9A; Table S5; Method details). Our analysis identified cell clus-
ters encompassing archetypal CD8 T cell subsets including
naive T cells, memory precursor cells, short-lived effector cells,
central memory cells, effector memory cells, terminally dysfunc-
tional cells, and their precursors. This cellular spectrum is similar
to, but more detailed than, previously published scRNA-seq da-
tasets of CD8 T cell responses in acute or chronic infection (Chen
etal.,2019c; Miller et al., 2019; Yao et al., 2019; Kurd et al., 2020;
Milner et al., 2020), showing that these cell states are consis-
tently generated across independent studies and in mice of
distinct genetic backgrounds.

Consistent with our scATAC-seq analysis (Figure 3), our
scRNA-seq analysis identified a subpopulation of cells (cluster
9) (Figure 4G) resembling the previously characterized progeni-
tor dysfunctional cells based on the enrichment of signature
genes such as |d3, Tcf7, Slamf6, and Cxcr5 (Figures 4E-4H
and S9B) and comparison with bulk RNA-seq from sorted sub-
populations (Figure S9A). Many genes significantly more acces-
sible and expressed in progenitor dysfunctional cells in bulk

Figure 4. scRNA-seq analysis uncovers phenotypic heterogeneity of CD8 T cell response and cell-state-specific TF expression

(A) Experimental setup.
B) UMAP of normalized scRNA-seq data.
C) Louvain clustering of scRNA-seq data.

D) Barplot of the number of cells in each cluster from each sample.
G) MAGIC-imputed gene expression in individual samples.

(
(
(
(
(
(
(
(

(J) MAGIC-imputed expression of selected genes encoding TFs.
See also Figures S6-S11 and Table S5.

E) Cluster-aggregated scRNA-seq gene expression in each cluster for differentially expressed genes between clusters (Z score row normalized).
F) MAGIC-imputed gene expression for selected genes (MAGIC, Markov Affinity-based Graph Imputation of Cells [van Dijk et al., 2018]).

H) Log2 fold change of expression in individual samples of selected genes in cluster 9 cells versus all other non-naive cells.
1) Cells at d7 in acute and chronic infection separately and their cluster composition, within overall UMAP.
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RNA-seq analysis and bulk and scATAC-seq analysis (Figures
1D, 3l, and S5) were enriched in scRNA-seq cluster 9. Thus, clus-
ter 9 consisted of progenitor and progenitor-like cells with a
mixed gene expression profile resembling naive, recently acti-
vated, dysfunctional, and memory cells.

Finally, we wanted to validate the similarity of progenitor-like
cells in early chronic infection and memory precursor cells, their
counterpart cells in acute infection, as observed in scATAC-seq
analysis (Figures 3E-3I, S4E, S5A, and S5B). Indeed, scRNA-seq
cluster 9 contained cells from all non-naive samples (Figures 4D
and S9C). Despite the limited resolution of differential expression
analysis for small subsets of cells, many critical marker genes
were consistently overexpressed in this cluster when considered
independently in d7 acute, d7 chronic, or d35 chronic infection,
including TFs and putative drivers of chromatin accessibility
changes such as Tox, Pou2f2, and lkzf2; the most overex-
pressed gene in this cluster, Xcl1; previously described progen-
itor markers Cxcr5 and Slamf6; and memory precursor marker
II7r (Figures 4G, 4H, and S9D). This again confirmed the emer-
gence of progenitor-like cells early in chronic infection, together
with a small nhumber of similar cells in acute infection that clus-
tered with progenitor dysfunctional cells, consistent with recent
reports (Chen et al., 2019b; Utzschneider et al., 2020). We
independently confirmed the presence of this CD8 T cell sub-
population at d7 in acute infection by reanalyzing three recently
published scRNA-seq datasets (Yao et al., 2019; Kurd et al.,
2020; Chen et al.,, 2019c) and verified enrichment of genes
Tox, Ikzf2, and Cxcr5 in this subpopulation (Figure S10). Trajec-
tory analysis using RNA velocity, although noisy, suggested that
progenitor cells arise from less differentiated cells that are only
sparsely captured in our dataset (Figure S11).

Thus, our scRNA-seq analysis provided a comprehensive
atlas of CD8 T cell functional and dysfunctional states and
confirmed the existence of progenitor/progenitor-like cell popu-
lations with similar transcriptional profiles in acute and chronic
infection.

scRNA-seq characterizes overlapping but divergent
CDS8T cell responses to acute and chronic viral infection
and cell-state-specific TF expression
We next sought to characterize the divergence of TF drivers of
acute and chronic immune responses using our scRNA-seq da-
taset. Consistent with our scATAC-seq analysis (Figure 3), cells
were already highly heterogeneous and markedly different tran-
scriptionally at d7 in acute and chronic infection (Figure 4l; Table
S5). Thus, although acute infection predominantly drives CD8
T cell response along the effector cell trajectory, a small fraction
of responding cells differentiate toward memory or even poten-
tially along the dysfunctional trajectory. Conversely, chronic
infection infrequently drives cells into an effector cell trajectory,
consistent with previous reports (Chen et al., 2019c). Together,
our observations suggest that both chronic and acute infection
give rise to cells at similar functional, activation, and differentia-
tion states, but these cells accumulate at different proportions
depending on the challenge.

Cell-state-specific enrichment of TF expression (Figures 4J
and S7C) was suggestive of cell-state-specific function, consis-
tent with observations from bulk and scATAC-seq data (Figures
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1D, 2B, 2C, and 3G). For example, we identified Gabpa as
effector specific; Rora as memory specific; factors Tcf1,
Nrdal, Nfat5, Id3, Pou2f2, Pou6f1, Nfkb1, and Batf as specific
for progenitor dysfunctional state; and Zfp143 and Zfp523 as
specific for terminal dysfunction. Thus, our scRNA-seq data sup-
port the cell-state-specific expression of TF drivers described in
our bulk and scATAC analyses.

Allele-specific analysis validates cell-state-specific TF
activity

To complement our observations of cell-state-specific TF activ-
ities from bulk and single-cell ATAC-seq and RNA-seq data an-
alyses, we exploited our scRNA-seq profiling in F1 hybrid mice
via allele-specific analysis of gene expression and TF binding,
following and extending our previous studies (van der Veeken
et al.,, 2019, 2020). Indeed, we identified thousands of genes
with significant allele-specific expression in many scRNA-seq
clusters (Figure S12A), including many genes involved in T cell
activation and function (Figure 5A). Most genes were consis-
tently imbalanced in their expression toward B6 or Spret allele
across clusters, while a few genes, including Gzmk or Fas,
were significantly imbalanced in a cluster-dependent manner.
Allelic imbalance of gene expression between B6 and Spret
was correlated with differential expression between B6 and
F1(B6xSpret) mice, supporting the accuracy of our allelic imbal-
ance estimates (Figure S12B).

To gain evidence for the causal role of TFs in regulating gene
expression, we looked for an association between allele-specific
TF binding, as predicted by motif analysis, and allele-specific
expression (Figures 5B and 5C). For each TF motif match in
the B6 or Spret sequence around an ATAC-seq peak summit,
we calculated the TF motif binding imbalance as the difference
in motif log-odds scores between B6 and Spret, Z score-normal-
ized. Many genes (e.g., Gzmk) (Figure 5C) had many TFs with
predicted binding imbalance at their promoter and enhancer
ATAC-seq peaks. We expected that genes with only a few po-
tential TF regulators would yield stronger association between
allele-specific TF binding and allele-specific expression.
Accordingly, when we restricted to genes with a single TF with
predicted allele-specific binding, this allele-specific binding
was concordant with allele-specific expression (Figure 5D).
Considering genes with at most 20 ATAC-seq peaks, we found
that imbalanced binding of certain TF motifs was significantly
associated with gene expression imbalance. For example, genes
with stronger TCF1/LEF1 promoter binding to the Spret allele
were significantly more imbalanced in their expression toward
Spret than were genes with stronger binding of the same motif
in B6 (Figure 5E). This suggests that TCF1/LEF1 binding at pro-
moters is associated with activation of expression. Overall, this
approach associated TF binding with activation or repression
of gene expression for multiple factors (Figures 5F and
S12C-S12E).

TCF1 was reported as a critical marker of progenitor dysfunc-
tional cells and is required for their generation during chronic
infection (Im et al., 2016; Utzschneider et al., 2016). To experi-
mentally validate that TCF1 binding is associated with activation
of gene expression, we mapped 3,325 TCF1 bound sites by CU-
T&RUN analysis in progenitor dysfunctional cells from
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Figure 5. Allele-specific scRNA-seq analysis reveals cis-regulation of gene expression by TFs
(A) Allelic imbalance of gene expression in scRNA-seq data clusters (color, p < 0.05, Mann-Whitney U test).
(B) Schematic for analysis of association between allelic imbalance of motif-based TF binding and gene expression.

(C) Left: ATAC-seq from B6/Spret F1 mice at Gzmk locus and examples of peaks with B6-specific (green), Spret-specific (brown) and ambiguous (gray) ATAC-seq

signal and allele-specific predicted TF binding. Right: allelic specificity of Gzmk expression with significant B6-specific (green)
expression highlighted.

and Spret-specific (brown)

(D) Predicted allelic imbalance of TF binding (difference between TF motif log odds scores, Z score normalized) for genes with significant allele-specific

expression in any of the scRNA-seq clusters (for genes with a single imbalanced motif); p-value, Mann-Whitney U test.

(E and F) Allele-specific expression analysis of scRNA-seq data. CDF plots: allelic imbalance between B6 and Spret of normalized cluster-aggregated scRNA-seq
signal, for genes predicted to be bound more strongly in B6 or Spret using sequence motif analysis in promoter peak summit regions. Barplots: summary of the

above analysis for each TF motif over clusters (black bars, Kolmogorov-Smirnov, p < 0.05; CDF, cumulative distribution function).
(G) Examples of allele-specific TCF1 CUT&RUN binding sites in progenitor dysfunctional cells in the established chronic infection.

(H) Allelic imbalance between B6 and Spret of normalized scRNA-seq signal in cluster 9 at d35 in chronic infection, for genes bound by TCF1 more strongly in B6

or Spret as measured by CUT&RUN in progenitor dysfunctional cells (p-value, Kolmogorov-Smirnov).
See also Figures S12 and S13 and Table S6.
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Figure 6. Progenitor CD8 T cells from chronic infection transferred to acute infection are committed to dysfunction

(A) Setup for the adoptive cell transfer experiment.

(B and C) Flow cytometry of selected genes for progenitor cells before transfer (B) and after transfer and expansion (C) in acute infection.

(D) Quantification of flow cytometry results for donor cells after transfer and expansion.

(E) Left: UMAP of all scRNA-seq data including the expanded donor cells; right: UMAP showing individual samples within the overall map.

(F) New Louvain clustering of all scRNA-seq data, with the barplot showing the number of cells in each cluster from each sample.

(G) Comparison of new clustering with the previous one (Figure 4C). Shown is a fraction of cells in clusters t0-t23 that belong to previously obtained clusters 0-21.
(H) Fraction of cells in each sample that belong to the progenitor cluster t4.

(I) Cluster composition of samples. Heatmap shows for each cluster what fraction of cells (excluding naive) that cluster occupies in each sample.

See also Table S5.

F1(B6xSpret) hybrid mice at d35 upon CI13 infection (Fig- activation genes and progenitor markers (Figures S13C and
ure S13A; Table S6). Direct TCF1 binding sites were strongly en-  S13D), including some targets with allele-specific TCF1 binding
riched for the TCF1 motif (Figure S13B) and included many T cell such as Tox, Tox2, Ifng, and Nfkb1 (Figures 5G and S13E).
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Consistent with previous observations and our predictions (Fig-
ure 2), accessibility levels at nearly all TCF1 targets were much
higher in progenitor cells than in terminally dysfunctional cells
(Figure S13F). Surprisingly, these accessibility changes were
not associated with changes in expression of nearby genes (Fig-
ure S13F). However, allele-specific TCF1 binding was signifi-
cantly associated with allele-specific expression of nearby
genes in progenitor dysfunctional cells in established chronic
infection (Figure 5H), consistent with a causal role for TCF1 in
activation of gene expression. Furthermore, allele-specific motif
enrichment analysis in CUT&RUN-defined TCF1 binding sites re-
vealed TCF1 binding co-factors, such as Runx and Nfkb family
factors (Figure S13G), consistent with allele-agnostic co-factor
analysis (Figure S13B).

Thus, our allele-specific analysis in the hybrid genome re-
vealed cis-regulatory effects of TF binding on gene expression
in CD8 T cells that are missed with standard approaches.

Progenitor cells differentiate to terminal dysfunction
under acute viral challenge

Adoptive transfer experiments using sorted progenitor dysfunc-
tional cells have demonstrated their potential to self-renew and
give rise to terminally dysfunctional cells in models of melanoma
and chronic infection (Miller et al., 2019; Im et al., 2016; Beltra
et al., 2020). Since single-cell chromatin and expression analyses
showed that dysfunctional progenitors resemble progenitor-like
cells at the plastic stage of T cell dysfunction development as
well as the MPEC population in acute infection, we asked whether
progenitor cells retain the potential to give rise to effector cells. We
therefore transferred fluorescence-activated cell sorting (FACS)
identified progenitor dysfunctional cells isolated from chronically
infected mice on d35 post-infection into congenically marked re-
cipients infected with LCMV Arm (Figures 6A and 6B; Method de-
tails). The transferred cells were profiled at d7 post-infection using
flow cytometry and scRNA-seq. Flow cytometry revealed that the
transferred CD8 T cells proliferated and persisted (Figures 6C and
6D). Furthermore, scRNA-seq analysis showed that these cells ex-
hibited heterogeneous gene expression states (Figures 6E-6I).
Despite the acute infection setting, the phenotypic space defined
by transferred cells after expansion most strongly overlapped with
that of cells in chronic infection settings. Clustering analysis of the
combined scRNA-seq data (Figures 6F and 6G) confirmed that the
expanded transferred cells were most similar in cluster composi-
tion and cluster-wise differential expressionto cells at d7 in chronic
infection (Figure 6l; Table S5). The expanded population lacked
effector cells (clusters t3, t10, and t11; Figures 6F and 6l) suggest-
ing the transferred population did not contain naive or memory
cells. Importantly, progenitor cells persisted upon transfer, con-
firming their self-renewal capacity (cluster t4; Figure 6H). Consis-
tent with a recent report (Utzschneider et al., 2020), our single-
cell analyses suggest that the progenitor cells observed in chronic
infection (d35) were already committed to a dysfunctional fate.

DISCUSSION
Our unified analysis of bulk ATAC-seq and RNA-seq data across

diverse studies of T cell response to chronic antigen exposure
defined a universal program of progression to terminal dysfunc-

¢ CellP’ress

tion. By joint analysis of data from numerous resources, we
gained statistical power to robustly identify individual chro-
matin-accessible sites, patterns of accessibility and expression
changes common across experimental models, and TFs whose
binding motifs explain global accessibility patterns in distinct
chromatin states in T cell differentiation.

Given the universality of T cell dysfunction program across
mouse models, we then focused on the LCMV infection as a
model to elucidate the early divergence in chromatin and tran-
scriptional states between dysfunctional and functional T cell
responses at single-cell resolution using scATAC-seq and
scRNA-seq. We found that a subset of antigen-specific T cells
in chronic LCMV infection are appropriately activated and
become effectors at d7, while most progress along a dysfunc-
tional trajectory. Conversely, a small number of cells in acute
LCMYV infection had progressed to a differentiated effector mem-
ory state and potentially also to a dysfunctional state by d7.
These findings, consistent with previous smaller-scale scRNA-
seq studies of functional or dysfunctional T cells, enable a
more nuanced comparison of acute versus chronic immune re-
sponses, where T cells can commit to multiple fates at differing
frequencies.

In our single-cell analyses, we found a TCF1* progenitor-like
cell population emerging as early as d7 post-infection in both
chronic and acute infection. This population formed the shared
cluster across the two infection settings in both scATAC-seq
and scRNA-seq data and therefore displayed the strongest tran-
scriptional and epigenomic similarity among all the cells profiled,
in contrast with recent analysis of sorted populations (Utzsch-
neider et al., 2020). Accordingly, in both settings, we found the
same genes enriched in expression and chromatin accessibility
at multiple promoter and enhancer peaks in this population,
including Tcf7, Xcl1, Cxcl10, Ccr7, Slamf6, I1d3, and Cxcr5, but
also Tox and Ikzf2, which had previously been associated with
terminally dysfunctional T cells. Notably, multiple lines of evi-
dence implicated several TFs as strongly associated with the
progenitor and progenitor-like population (Figures 1D, 2B, 2C,
3G, 4J, 5E, 5F, S5B, and S9B), including the previously
described TCF1 and the newly identified OCT2 (encoded by
Pou2f2). However, differential accessibility analysis and motif
regression modeling, despite being supported by analysis of
relatively small cell numbers, identified subtle differences be-
tween cells from chronic and acute samples in this progenitor-
like subpopulation, with cells from acute infection potentially
representing an IL7R" MPEC subset and those from chronic
infection forming a nascent progenitor reservoir (Figures 3G,
3J, and S5C). These findings may suggest an earlier divergence
between progenitor and MPEC populations at the level of chro-
matin state and gene expression.

The presence of cells from both chronic and acute viral infec-
tion in the scRNA-seq cluster containing TCF1* PD1* progenitor
cells and in the scATAC-seq progenitor-like cluster led us to test
the plasticity of the progenitor cell population. Using an adoptive
cell transfer experiment together with scRNA-seq profiling and
mapping these data to the comprehensive scRNA-seq atlas of
CD8 T cell responses that we constructed, we confirmed that
progenitor cells isolated from an established chronic viral infec-
tion were committed to a dysfunctional fate. While transferred
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progenitor cells could proliferate in a new host under acute im-
mune challenge, they displayed the single-cell phenotypic profile
of a chronic immune response. These results are consistent with
earlier adoptive T cell transfer studies showing that by d15 post-
antigen encounter, T cells that had responded to chronic LCMV
infection lost their ability to form functional memory under acute
LCMV challenge (Angelosanto et al., 2012) and with similar ex-
periments documenting loss of plasticity for tumor-specific
T cells in an autochthonous liver cancer model (Schietinger
et al., 2016). However, these earlier studies also confirmed that
at early time points in settings of chronic antigen stimulation, an-
tigen-specific T cells—or at least a subpopulation of these
cells—retained the potential to mount a functional response
and form memory cells. Our single-cell analyses of T cells under
chronic immune challenge suggest this transient plasticity re-
sides within the early progenitor-like population, consistent
with recent phenotypic studies (Utzschneider et al., 2020).

Trajectory analysis using RNA velocity remains noisy. Further
studies of the origins and regulatory mechanisms of mainte-
nance and differentiation potential of the progenitor and progen-
itor-like cell populations are warranted, (e.g., using heritable bar
codes for tracking cell fates within a TCR clonal population over
time [Wagner and Klein, 2020] and at time points earlier than d7
upon T cell activation). Performing these studies in F1 hybrid
mice can help further interrogate regulatory mechanisms of
gene expression by linking allele-specific analysis of TF motif oc-
currences (or allele-specific TF occupancy) to allelic imbalance
of target gene expression.

In conclusion, our datasets and analyses lay the groundwork
for resolving the fundamental questions of T cell differentiation
programs. We expect that our unified T cell atlas will provide a
valuable resource both for basic T cell biologists and for cancer
immunologists seeking to therapeutically target the transcrip-
tional programs underlying progression to fixed dysfunction.

Limitations of the study

Sorted populations subjected to bulk profiling are still a mixture of
the purer subpopulations we characterized with single-cell anal-
ysis, complicating interpretation of the bulk analysis. While our
batch-effect correction succeeded in finding strong similarities
and some differences between models, generating all data in a
controlled manner within the same lab remains the gold standard
for differential analyses. We limited our single-cell analyses to the
LCVM model to enable comparison of acute and chronic re-
sponses; however, similar single-cell analyses in a tumor model
would directly address whether the underlying distribution over
T cell states differs in cancer versus chronic infection. T cell differ-
entiation is a particularly difficult setting for computational trajec-
tory analysis: subpopulations rapidly expand or collapse, and
overall differences between functional states can be subtle. While
we provide results of RNA velocity analysis, we believe that direct
experimental determination with cell tagging approaches will be
needed to resolve differentiation trajectories.

STARXMETHODS

Detailed methods are provided in the online version of this paper
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

CD8a. - Brilliant Violet 605
TCRB - PE-eFluor 610
CD44 - APC

CD62L - APC-eFluor780
NK1.1 - eFluor 450

CD4 - PerCP-Cyanine5.5
PD-1 - FITC

CD39 - PerCP-eFluor 710
CD73 - eFluor 450

CD9 - PE

CD38 - APC

Rabbit anti-TCF1 monoclonal
anti-mouse CD4

BioLegend
ThermoFisher
Tonbo Bioscience
ThermoFisher
ThermoFisher
Tonbo Bioscience
ThermoFisher
ThermoFisher
ThermoFisher
BioLegend
ThermoFisher
Cell Signaling Technology
BIOXCELL

Cat#100744; RRID: AB_2562609
Cat#61-5961-82; RRID: 2574644
Cat#20-0441-U100; RRID: AB_2621572
Cat#47-0621-82; RRID: AB_1603256
Cat#48-5941-82; RRID: AB_2043877
Cat#65-0042-U100; RRID: AB_2621876
Cat#11-9985-82; RRID: AB_465472
Cat#46-0391-80; RRID: AB_10717513
Cat#48-0731-82; RRID: AB_10853356
Cat#124805; RRID: AB_1279327
Cat#17-0381-82; RRID: AB_469382
Cat#2203S; RRID: AB_2199302
Cat#BE0003-1; RRID: AB_1107636

Bacterial and virus strains

LCMV Armstrong and Clone 13 Produced in-house N/A

Chemicals, peptides, and recombinant proteins

D(b) NP396 LCMV Tetramers NIH Tetramer Core Facility N/A

Agencourt AMPure XP - PCR Purification Beckman Coulter Cat#A63881
Ghost Dye Live/Dead stain Tonbo Biosciences Cat#13-0870-T100
Protein A/G-MNase Produced in-house N/A

Complete mini EDTA-free Protease Inhibitor Sigma-Aldrich Cat#11836153001

Critical commercial assays

eBioscience Foxp3/Transcription Factor
Staining Buffer Set

MinElute Reaction Cleanup Kit
KAPA Hyper Prep Kit
KAPA UDI adaptor kit

Thermo Fisher

QIAGEN
Kapa Biosystems
Kapa Biosystems

Cat#00-5523-00

Cat#28206
Cat#KK8504
Cat#KK8727

Deposited data

sCATAC-seq, scRNA-seq, CUT&RUN This paper NCBI GEO: GSE164978

ATAC-seq, RNA-seq NCBI GEO Accession numbers listed in Table S1

Experimental models: Organisms/strains

Spret/EiJ JAX 001146

CD45.1 JAX 002014

C57BL/6J JAX 000664

Software and algorithms

Flowjo Tree Star https://www.flowjo.com

Prism GraphPad https://www.graphpad.com/scientific-
software/prism/

lllustrator Adobe N/A

fastg-dump NCBI SRA Toolkit https://trace.ncbi.nim.nih.gov/Traces/sra/
sra.cgi?view=toolkit_doc

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2

SAMtools Li et al., 2009 http://www.htslib.org/
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MACS2 Zhang et al., 2008 https://github.com/macs3-project/ MACS

IDR Lietal., 2011 https://github.com/nboley/idr

Rsubread Liao et al., 2019 https://bioconductor.org/packages/
release/bioc/html/Rsubread.html

deepTools Ramirez et al., 2016 https://github.com/deeptools/deepTools

DESeq2 Love et al., 2014 https://bioconductor.org/packages/
release/bioc/html/DESeqg2.html

gprofiler2 Raudvere et al., 2019 https://cran.r-project.org/web/packages/
gprofiler2/index.html

HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/

FIMO Grant et al., 2011 https://meme-suite.org/meme/doc/
fimo.html

mpath Wang et al., 2014 https://cran.r-project.org/web/packages/
mpath/index.html

HISAT2 Kim et al., 2019 http://daehwankimlab.github.io/hisat2/

HiC-Pro Servant et al., 2015 https://github.com/nservant/HiC-Pro

HiC-DC Carty et al., 2017 https://bitbucket.org/leslielab/hic.dc

cellranger-atac

10X Genomics

https://support.10xgenomics.com/single-
cell-atac/software/downloads/latest

scanpy Wolf et al., 2018 https://github.com/theislab/scanpy

GSVA Hanzelmann et al., 2013 https://www.bioconductor.org/packages/
release/bioc/html/GSVA.html

MAGIC Van Dijk et al., 2018 https://github.com/
KrishnaswamyLab/MAGIC

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

cellranger 10X Genomics https://support.10xgenomics.com/single-
cell-gene-expression/software/downloads/
latest

velocyto La Manno et al., 2018 http://velocyto.org/

scvelo Bergen et al., 2020 https://scvelo.readthedocs.io/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Christina
Leslie (cleslie@cbio.mskcc.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability

The code for computational analysis and additional data visualizations are available at https://bitbucket.org/leslielab/cd8t_atlas. The
accession number for the new scATAC-seq, scRNA-seq and CUT&RUN data reported in this paper is NCBI GEO: GSE164978.
Previously published datasets reanalyzed in this study are listed in Table S1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Animals were housed at the Memorial Sloan Kettering Cancer Center (MSKCC) animal facility under specific pathogen free (SPF) con-
ditions on a 12-hour light/dark cycle under ambient conditions with free access to food and water. All studies were performed under
protocol 08-10-023 and approved by the MSKCC Institutional Animal Care and Use Committee. Mice used in this study had no pre-
vious history of experimentation or exposure to drugs. Male Spret/EiJ mice were purchased from Jackson laboratory and bred to
female CD45.1 mice on a C57BL/6 genetic background. Adult (at least 8 weeks old) male and female F1 offspring were used for
experiments as indicated.
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METHOD DETAILS

Construction of ATAC-seq peak atlas

ATAC-seq data from multiple previous studies were downloaded from GEO using fastg-dump from NCBI SRA Toolkit (https://trace.
ncbi.nim.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc). Functional annotation of samples (naive, effector, memory, dysfunctional,
etc.) was obtained from each study (Table S1). Reads were aligned to the mouse genome mm10.GRCm38 using bowtie2 v2.3.4.3
(Langmead and Salzberg, 2012). Uniquely aligned reads were extracted using SAMtools v1.9 (Li et al., 2009). Peaks were called using
MACS2 v2.1.1.20160309 (Zhang et al., 2008). For each data source, peaks were called using all samples from all replicates com-
bined. Then IDR (Li et al., 2011) was used to identify reproducible peaks between at least one pair of replicates of the same condition.
The union of all such peaks formed the peak library for each study. Then peaks identified in each study were all combined into a com-
mon list, by taking the union of all genomic positions covered by peaks from different studies using function reduce(c() in R (R v3.4.0
was used in all our analysis except when otherwise noted). Peaks were further split into subpeaks around summits of signal, using a
custom script based on the signal processing package https://bitbucket.org/leslielab/biosignals. Peak summit regions were then
filtered based on ATAC-seq read coverage of 150bp regions centered at the summits, by including only the peak summit regions
with at least 100 reads in at least one sample and at least 5 reads on average across all samples within any of the three categories
(naive, functional, and dysfunctional). Peaks that included at least one of such summit region were included in the final atlas. This
resulted in an atlas of 129799 chromatin accessibility peaks for CD8 T cells. Peaks were annotated using GENCODE vM14 (Frankish
et al., 2019). Each peak was associated with the closest gene, if this gene was within 50Kb in genomic coordinates. Peaks were an-
notated by applying the following sequence of rules: peaks were classified as promoter peaks if within 2Kb from a transcription start
site of any annotated transcript; otherwise as exonic if overlapping with any exon of any annotated transcript; otherwise as intronic if
within a gene body of any annotated gene; or finally as intergenic if within 50Kb of a gene. All the remaining peaks were left unclas-
sified. Reads from each sample were counted in peaks and 150bp genomic regions centered around peak summits using Rsubread
v1.32.4 (Liao et al., 2019). For visualization, bigWig files and count matrices in bins around peak summits were produced using deep-
Tools (Ramirez et al., 2016). Snapshots of ATAC-seq signal at selected genomic regions were obtained from UCSC Genome Browser
(Kent et al., 2002).

Batch effect correction for ATAC-seq

DESeq2 v1.22.2 (Love et al., 2014) was used to fit multi-factorial models to ATAC-seq read counts in peaks or peak summits. The
main model included two factors where one factor represented the source of the data, and the other factor represented the functional
annotation of the sample, broadly defined as naive, functional, and dysfunctional. For PCA analysis and visualization, batch effect-
corrected values were used. To do the batch effect correction, log2FC values associated with the data source factor were extracted
from the model for all peaks and used to correct the original counts, by dividing them by the exponentiated log2FC values.

The alternative variant of the model included a two-valued functional annotation factor, where one value was for naive samples, and
the other for all antigen-experienced cells, including all functional and dysfunctional cells. This alternative variant of the model pro-
duced results similar to the main model (Figure S1C).

In order to determine whether memory precursor cell samples and tissue-resident memory cell samples were similar to functional
or dysfunctional cells, a variant of this alternative model with a two-valued functional annotation factor was used. For this, differen-
tially accessible peaks were detected between functional and dysfunctional cells but excluding memory precursor and tissue-resi-
dent memory cell samples. Then PCA analysis for all samples was run on ATAC-seq read counts restricted to these differentially
accessible peaks, revealing that memory precursor and tissue-resident memory cells are more similar to other functional effector
and memory cells.

Differential accessibility analysis

DESeqg2 v1.22.2 was used to perform differential accessibility analysis between selected pairs of conditions. For this, original counts
were used, and the model included factors for functional annotation, cell state, data source, and/or type of immune challenge, where
appropriate. For each gene, overall differential accessibility of its peaks between a certain pair of cell states was assessed as follows.
A Mann-Whitney U test was used to compare the vector of all peak accessibility log2 fold changes between these two cell states with
the vector of log2 fold changes only for the peaks associated with the gene. Then the resulting p values (one for each gene) were
adjusted for multiple hypothesis testing (multiple tested genes) using g-value. This analysis was visualized with a scatterplot where
the x axis shows the log2 fold change of gene expression, the y axis shows mean accessibility log2 fold change of the peaks asso-
ciated with a gene, black indicates significant differential expression (FDR < 0.05), and red and blue indicate significant overall dif-
ferential accessibility of peaks associated with a gene (g < 0.01), only for significantly differentially expressed genes. For functional
analysis, the most significantly differentially accessible genes (g < 0.01) were selected, split into those with positive and negative
average differential accessibility across the gene’s peaks, and functional enrichment assessed for these genes using gprofiler2
with the background of all expressed genes (Raudvere et al., 2019). Genes significantly more accessible in terminally dysfunctional
cells in chronic infection as compared with terminally dysfunctional cells in the tumors (Figure S2D) were most significantly enriched
for GO terms such as “immune system process” (rank 1, p < 3e-19) and “T cell activation” (rank 4, p < 6e-14). Genes significantly

e3 Molecular Cell 81, 2477-2493.e1-e10, June 3, 2021


https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_doc
https://bitbucket.org/leslielab/biosignals

Molecular Cell ¢? CellPress

more accessible in endogenous than in CAR-T dysfunctional cells (Figure S2D) were often associated with terminal dysfunction as
evidenced by higher accessibility at loci of important dysfunction marker genes (Tox, Havcr2, Entpd1, Tigit).

Transcription factor motif analysis

Transcription factor (TF) binding motifs for Mus musculus were downloaded from CIS-BP version 1.02 (Weirauch et al., 2014) via the
web interface (compressed archive Mus_musculus_2016_06_01_2-46_pm.zip). For the DNA sequences in 150bp-wide regions
around peak summits, script findMotifsGenome.pl from HOMER suite (Heinz et al., 2010) was run with parameters “mm10 -len
8,10,12 -size given -S 100 -N 1000000 -bits -p 10 -cache 1000’ in order to identify the significance of presence of each moitif in
the sequences of the peaks as compared with the background sequences. We limited the analysis to motifs corresponding to ex-
pressed TFs, defined as those with at least 200 library-size normalized RNA-seq reads in at least one condition in at least one study.
We focused only on the motifs present in at most 50% of the peak summit region sequences. Furthermore, we detected de novo
motifs using HOMER in the same sequences and associated them with TFs by similarity with the CIS-BP motifs using script compar-
eMotifs.pl with parameters “-reduceThresh 0.7 -matchThresh 0.9.” The most significant motif per TF, either from the database or
identified de novo, was selected for further analysis (with potentially multiple TFs associated with the same motif), if it had HOMER
p < 0.001. This resulted in 113 motifs. Furthermore, we merged motifs that had correlation of motif occurrences in the peak summits
above 0.75. This resulted in the list of 105 motifs corresponding to 204 TFs for further analysis. FIMO version 4.11.2 (Grant et al., 2011)
was used to search for motif matches in 150bp regions around the peak summits. Matches with p < 1e-3 were chosen as significant.

Predictive modeling of transcription factor activity

To infer cell-state-specific TF activities, we performed a supervised modeling of chromatin accessibility data based on TF motif oc-
currences. We formed a feature matrix that consisted of TF motif match predictions in regions around peak summits. Each value in
the matrix was a sum of FIMO log-odds scores of a TF motif occurrence in a peak summit region. For each ATAC-seq sample, we
performed negative binomial generalized linear regression modeling of the batch-effect corrected chromatin accessibility values y in
peak summit regions using this feature matrix, with ridge regularization, using function cv.gimreg() from R package mpath (Wang
etal., 2014) with parameters family = “negbin,” alpha = 0, theta = 1, nfolds = 5, maxit = 20000, thresh = 1e-5. We limited the regression
analysis to peak summit regions with at least 10 batch-effect corrected reads on average across all samples. We identified a hyper-
parameter multiplier a of the ridge regularization penalty term using 5-fold cross-validation; for this we ran the regression with 30
values of a formed by multiplying the mean of y by a vector of values from 1078 to 10° (with equidistant logso values) and choosing
the value of a that maximizes the Spearman correlation between the observed and predicted values of y (Figure S3B). Then we used
the coefficients of this regression as a proxy for TF activity scores and used them for downstream analysis; for this, we limited our
downstream analysis to results of regression only for those ATAC-seq samples where the fit converged for at least 4 values of the
hyperparameter a.

RNA-seq data analysis

RNA-seq data from multiple previous studies were downloaded from GEO using fastg-dump. Functional annotation of samples
(naive, effector, memory, dysfunctional, etc.) was obtained from each study (Table S1). Reads were aligned to the mouse genome
mm10.GRCm38 using hisat2 v2.1.0 (Kim et al., 2019). Reads from each sample were counted in genes annotated by GENCODE
vM14 using Rsubread v1.32.4. Batch effect correction and differential expression analysis were performed the same as for
ATAC-seq data.

Comparison of ATAC-seq and RNA-seq using Hi-C contacts

Published Hi-C data from naive CD8 T cells (He et al., 2016) was used to define associations of ATAC-seq peaks to genes and
compare it with our default peak-to-gene association (see Construction of ATAC-seq peak atlas), using a computational experiment
comparing ATAC-seq and RNA-seq data. Hi-C read pairs were processed using HiC-Pro pipeline (version 2.11.1) (Servant et al.,
2015). Reads were trimmed to 30nt and mapped to the mm10 reference genome. We used valid pairs output in cis from HiC-Pro
that were mapped uniquely to the genome. Valid pairs from replicates were merged and binned into 10kb bins. HiC-DC (Carty
et al., 2017) was used to assign statistical significance to each interaction bin. Significant chromatin loops between 10Kb bins
were defined at q < 0.05 and with support by more than 20 Hi-C valid pairs, resulting in 22,337 significant loops. Median distance
between loop ends was 180Kb, and only 5% of loops had distance between ends shorter than 50Kb. For control, non-significant
loops were defined as those with g-value between 0.1 and 0.2 and supported by not more than 10 Hi-C valid pairs, resulting in
118,497 loops. Peaks were associated to genes using these loops as follows. For a loop between 10Kb-long genomic regions A
and B, a peak was associated to a gene if the peak was within 5Kb window from A and another peak at a promoter of the gene
was within 5Kb from B. Then differential gene expression (RNA-seq log2FC) between naive and effector cells was compared between
genes associated with at least one significantly more accessible peak in naive than in effector cells and in effector than in naive cells
(FDR < 0.05), for different methods of association of peaks to genes: default associations, associations based on significant loops,
and associations based on non-significant loops (Figure S3D). The same analysis was performed for comparison between naive and
dysfunctional cells (Figure S3D).
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Single-cell ATAC-seq experiments
Four male C57BL/6J mice per group were infected with either LCMV Armstrong (2x10° p.f.u. via intraperitoneal injection) or LCMV
Clone 13 (2x10° p.f.u. via retroorbital injection). On day 7 post-infection, total CD8 T cells from pooled spleens were double sorted by
flow cytometry and prepared for single cell ATAC-seq analysis.

scATAC-seq was performed using Chromium instrument (10x Genomics) and Single Cell ATAC Reagent Kits (Chemistry v1). The
suspension of cells was processed following the User Guide (CG000168 Rev A). Briefly, cells were lysed in bulk, washed and resulting
nuclei suspension treated with ATAC reagents provided in the kit. Approximately, 8000 nuclei per sample were loaded onto micro-
fluidics Chip E and encapsulated with DNA barcodes and reaction mix. Following emulsion-PCR the resulting material was purified
and subjected to 12-cycles of indexing PCR. The indexed scATAC-Seq libraries were double-size selected using SPRI beads and
sequenced on an lllumina NovaSeq 6000 instrument (Read 1 — 50 cycles, i7 index — 8 cycles, i5 index — 16 cycles, and Read 2 -
50 cycles) at 180M reads per sample.

Single-cell ATAC-seq data preprocessing, dimensionality reduction, clustering

The data was preprocessed with cellranger-atac from 10X. Then using the BAM files with read alignments for the two samples pro-
duced by cellranger-atac, peaks were detected using MACS2. An extended list of peaks was formed by combining the previously
constructed bulk ATAC-seq peaks with the non-overlapping newly identified peaks. The cellranger-atac tool was then rerun with
this extended peak list as input to obtain a count matrix for each of the two samples. Cells with a log library size less than 3.5 and
peaks that were accessible in less than 4 cells were excluded from the analysis. The count matrix was then binarized and transformed
using term frequency-inverse document frequency (TF-IDF, scikit-learn package v0.20.3, https://scikit-learn.org/) for normalization,
followed by PCA and UMAP for dimensionality reduction and visualization. Cells were clustered by the Louvain clustering method.
Analysis and visualizations were performed using python package scanpy v1.4.4 (Wolf et al., 2018).

Comparison of scATAC-seq with bulk ATAC-seq data compendium

Signature peak sets for progenitor, naive, effector, MPEC, and terminal dysfunction were derived from bulk ATAC-seq analysis (Table
S2) and then used to score cells by taking the average normalized counts of the peak set and subtracting the average normalized
counts of a reference peak set. The naive cell signature was defined as peaks significantly more accessible in naive cells in naive
versus functional and naive versus dysfunctional cell comparisons (using thresholds baseMean > 50, FDR < 0.001, log2 fold change <
—2 for both comparisons). The effector cell signature was defined as peaks significantly more accessible in effector cells in naive
versus effector (baseMean > 50, FDR < 0.01, log2 fold change > 1), effector versus memory (baseMean > 10, FDR < 0.05, log2
fold change < 0), and effector versus early dysfunctional (baseMean > 10, FDR < 0.05, log2 fold change < 0) cell comparisons.
The memory cell signature was defined as peaks significantly more accessible in memory cells in effector versus memory (baseMean
> 50, FDR < 0.001, log2 fold change > 0.5) and memory versus terminally dysfunctional (baseMean > 50, FDR < 0.001, log2 fold
change < —2) cell comparisons. The MPEC signature was defined as peaks significantly more accessible in MPEC versus effector
cells (baseMean > 50, FDR < 0.001, log2 fold change > 1). The progenitor dysfunctional cell signature was defined as peaks signif-
icantly more accessible in progenitor versus terminally dysfunctional cells (baseMean > 100, FDR < 0.001, log2 fold change < —2).
The terminally dysfunctional cell signature was defined as peaks significantly more accessible in dysfunctional cells in naive versus
dysfunctional (baseMean > 10, FDR < 0.05, log2 fold change > 0), memory versus terminally dysfunctional (baseMean > 10, FDR <
0.05, log2 fold change > 0), progenitor versus terminally dysfunctional (baseMean > 50, FDR < 0.01, log2 fold change > 1), effector
versus early dysfunctional (log2 fold change > 0) cell comparisons.

BAM files were generated with aligned scATAC-seq reads corresponding to cells from each cluster, further split between the two
samples. Pseudobulk counts were obtained from these BAM files for the extended peak list using Rsubread v1.32.4. Limited only to
clusters 1-6, 8, 10, 13 that contained activated virus-specific cells, differential accessibility analysis was then run using these pseu-
dobulk counts for each of the clusters, within each of the two samples, versus all the remaining clusters split between the two sam-
ples. The most significantly differentially open peaks formed a signature set of peaks for each cluster split between the two samples.
Then ssGSEA (Barbie et al., 2009) was run for these signatures against batch-effect corrected library-size normalized bulk ATAC-seq
counts using the package GSVA v1.30.0 (Hanzelmann et al., 2013).

Isolation of cells for scRNA-seq

For isolation of CD8 T cells responding to acute infection, B6/Spret F1 mice, where B6 stands for C57BL/6J and Spret stands for
SPRET/EiJ, were infected with 2x10° p.f.u. of LCMV Armstrong via intraperitoneal injection or left uninfected. Splenocytes were
stained with a cocktail of fluorescent antibodies, NP396 tetramer, and viability dye to mark dead cells, and sorted using flow cytom-
etry. Naive CD8 T cells were isolated from pooled spleens of 2 uninfected mice as CD44-CD62L+ CD8 T cells. Activated and memory
effector cells were isolated as NP396+ CD8 T cells from pooled splenocytes of 2 or 3 mice on day 7 or day 40 post-infection, respec-
tively and used as input for scRNA-seq analysis.

For isolation of cells responding to chronic infection, B6/Spret F1 or B6 mice were infected with LCMV clone 13 by retroorbital in-
jection of 4x10° p.f.u. of virus. Mice were depleted of CD4 T cells by injection of 200ug aCD4 antibody (BioXCell cat: BEO003-1) one
day prior to and one day post-infection. Cells were isolated as live CD62L- CD8 T cells from spleens of 3 pooled mice per group and
used as input for scRNA-seq analysis.
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Adoptive transfer of progenitor dysfunctional cells

Four C57BL/6J mice were infected with LCMV Clone 13 (2x10° p.f.u. via retroorbital injection). On day 35 post-infection, splenocytes
were pooled and stained using a cocktail of fluorescently labeled antibodies and Ghostdye Violet 510 (Tonbo cat: 13-0870-T100) to
distinguish dead cells. Progenitor dysfunctional cells were isolated by flow cytometry-based sorting as PD1+, CD73+, CD39- CD8
T cells. This population was also CD9+ and CD38 low. 50,000 progenitor dysfunctional cells/recipient were transferred into 4 CD45.1/
CD45.2 mice via retroorbital injection. Recipients were infected with LCMV Armstrong (2x10° p.f.u. via intraperitoneal injection). On
day 7 post-infection donor cells were re-isolated based on expression of congenic markers and prepared for scRNA-seq.

Single-cell barcoding, library preparation and sequencing

Single-cell suspensions were loaded on 10x Genomics Chromium instrument and encapsulated in microfluidic droplets with bar-
coded DNA hydrogel beads and RT reagents from Chromium Single Cell 3' Reagent kit (v3). The cDNA synthesis/barcoding was per-
formed following manufacturer’s instructions: 53°C for 45 min followed by heat inactivation at 85°C for 5 min. The barcoded-cDNA
was purified and PCR-amplified and prepared for sequencing according to the Single Cell 3'Reagent kit 3 User Guide (CG000183;
Rev B). The DNA sequencing was performed on the lllumina NovaSeq 6000 instrument (R1 read — 26 cycles, R2 read — 70 cycles or
higher, and index read — 8 cycles), aiming for ~200 million reads per ~5,000 single cells.

Single-cell RNA-seq data preprocessing, dimensionality reduction, clustering

We analyzed scRNA-seq data from the six samples labeled “acute_d00,” “acute_d07,” “acute_d40,” “chronic_d07,” “chron-
ic_d35,” “chronic_d35_b6.” Reads were aligned to the combined B6 and Spret genome using hisat2 v2.1.0. For this, files Mus_mus-
culus.GRCm38.dna.toplevel.fa.gz and Mus_spretus_spreteij. SPRET_EiJ_v1.dna.toplevel.fa.gz with genomic sequences of B6 and
Spret mice, respectively, were obtained from NCBI FTP server, and hisat2 index for the chromosomes from both files was con-
structed. Using the BAM files of scRNA-seq read alignment, UMI counts for each gene in B6 and Spret genomes were obtained using
a custom script, by overlapping read alignments with exonic annotations of genes in either B6 or Spret and counting UMI corrected
using the method from seqc (Azizi et al., 2018). For this, files Mus_musculus.GRCm38.91.gtf.gz and Mus_spretus_spreteij. SPRE-
T_EiJ_v1.86.gtf.gz with gene annotations for B6 and Spret genomes, respectively, were obtained from NCBI FTP server. The result-
ing read count tables were used for downstream analysis in scanpy v1.3.7. Cells with less than 100 genes with positive counts or cells
with more than 40000 total positive UMI counts were filtered out, and genes with less than 500 positive counts across cells from all
samples were filtered out. Cells with high expression of B cell genes (likely contamination) were filtered out (15 cells). Only protein-
coding genes were included in the analysis, and furthermore ribosomal genes were excluded from the analysis. Based on inspection
of the distribution of the number of genes detected per cell in each sample, cells from sample “acute_d00” with log;o gene count less
than 2.85, from sample “acute_d07” with logo gene count less than 2.9, from sample “acute_d40” with log4g gene count less than
2.9, from sample “chronic_d07”” with log4o gene count less than 2.9, from sample “chronic_d35” with log;o gene count less than 2.8,
from sample “chronic_d35_b6” with log4o gene count less than 2.8 were excluded from the analysis. Then the count matrix was
filtered again to include only cells with at least 500 genes and genes with at least 100 counts. This resulted in a read count table
of 9822 genes in 24400 cells across the six samples.

Counts for 9124 genes present in both B6 and Spret annotations were used for normalization, dimensionality reduction, and clus-
tering. For normalization, the total count in each cell was calculated, excluding the top 50 genes with the highest total count across all
cells, and then each count divided by the total count per cell and multiplied by the median of total counts per cell. For dimensionality
reduction and visualization, principal component analysis (PCA) was run for the normalized counts, the first 50 principal components
(PCs) were selected, and the KNN (nearest neighbor) graph was built for k = 50 nearest neighbors per cell using Euclidian metric. The
kNN graph was then used to construct three-dimensional uniform manifold approximation and projection (UMAP) with default pa-
rameters. The data was also visualized with t-distributed stochastic neighbor embedding (tSNE) using function “TSNE” from pack-
age sklearn.manifold with perplexity = 150 and otherwise default parameters applied to the first 50 PCs of normalized count matrix;
with diffusion maps and force-directed atlas applied to the kNN graph. Louvain clustering was then applied to the kNN graph with
resolution = 1.9 and otherwise default parameters. For visualization of gene expression, imputation algorithm MAGIC (Van Dijk et al.,
2018) was applied to the normalized count matrix using package magic with parameters a = 15, k = 30, knn_dist = ‘euclidean’,
n_pca = 50, random_state =0, t = 3.

To assess the similarity of samples “chronic_d35” and “chronic_d35_b6,” kNN graph analysis was performed. For each cell c and
a sample S, the distance between c and S was calculated as the average distance in the kNN graph between ¢ and cells from S,
measured as the number of edges in the shortest path. This value was calculated for each cell ¢ from samples “chronic_d35”
and “chronic_d35_b6” against each of the samples, and shown as a boxplot (Figure S7E).

Overview of functional annotation of scRNA-seq data

We used a combination of complementary approaches in order to functionalize the scRNA-seq data. First, unbiased differential
expression analysis identified genes enriched in each cluster (Figures 4E, S8A, and S8B; Method details). Second, visualizing the
expression of the T cell signature genes (Figures 4F, S7C, and S8C) further helped to interpret the clusters and characterize subsets
of cells. Clusters 0, 7, 19, dominated by cells profiled before infection (Figure S8D), were enriched for naive T cell marker genes Ccr7,
Ccr9, Lef1, Tcf7. Gzmb was highly expressed in clusters 4, 6, 14, all dominated by cells at d7 upon acute infection, consistent with
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effector function. Cell proliferation and survival related genes Birc5, Stmn1, Cdca3 were enriched in clusters 4, 6, 8, 14, 17, 20, which
were dominated by cells from early response (d7) to acute or chronic infection. Clusters 2, 10, 13 displayed high II7r expression and
were dominated by cells from acute infection at d40, which were mostly memory cells. Clusters 1, 3,11, 12, 13, 21 were dominated by
cells at d35 in chronic infection and enriched for markers of dysfunction Pdcd1, Lag3, Entpd1, and Cd38. Clusters 5, 15 were domi-
nated by cells from chronic infection at d7 and enriched for Lgals1, Lgals3, Mt1, Mt2. Cluster 18 consisted of dysfunctional cells en-
riched for Pdcd1, Lag3, and Entpd1 that also overexpressed Ifng, Ccl3, Ccl4, and Nr4a2 and thus were also highly activated. Clusters
9 and 16 overexpressed markers of progenitor cells Cxcr5, Slamf6, Tcf7, and Id3. Finally, association of our bulk RNA-seq compen-
dium (Figure S1D) with scRNA-seq cluster-specific expression profiles using ssGSEA largely confirmed our cluster characterizations
(Figure S9A).

Differential expression analysis of scRNA-seq data

Differential expression analysis between cells from groups A and B was performed as follows. Let xg and yg be vectors of normalized
scRNA-seq expression values of the gene G in individual cells from groups A and B, respectively. Then log2 fold change (log2FC) of
expression for G is estimated as logx((Yg + €) / (Xg + €)) where Xg = mean(xg), Yg = mean(yg) are means of normalized expression of G
in cells from groups A and B, respectively, and c is a corrective value defined as median over all values My where My is the mean
expression of a gene g across all cells from all samples. Only genes with the absolute log2FC above a certain threshold were
then tested for significance. For each such a gene G, the significance of the log2FC for G was estimated with the Mann-Whitney
U test applied to normalized counts xg and yg for G in individual cells from groups A and B; the Bonferroni correction for multiple
hypothesis testing was then applied to these p values.

Using this approach, differential expression analysis was performed for each cluster versus cells from all other clusters, testing for
significance of all absolute log2FC values above 0.5. The same analysis was also repeated when excluding all naive cells defined as
cells from sample “acute_d00” or clusters 0, 7, 19. Differential expression analysis was also performed for each pairwise comparison
between clusters. Furthermore, for each sample, differential expression analysis was performed for each cluster versus cells from all
other clusters when restricting the analysis only to cells from that sample.

Comparison of scRNA-seq with bulk RNA-seq data compendium

The most significantly differentially expressed genes in each scRNA-seq cluster (adjusted p < 0.001, log2FC > 0.8), defined as the
union of at most 100 genes from the comparison of the cluster with all other clusters and at most 100 genes from the same compar-
ison restricted to non-naive cells, formed a signature set of genes for this cluster. ssGSEA was then run for these signatures against
batch-effect corrected library-size normalized bulk RNA-seq read counts using package GSVA v1.30.0.

Analysis of scRNA-seq data from adoptive cell transfer experiment

The six main scRNA-seq samples were combined with the sample “transfer_acute_d07” from the progenitor dysfunctional cells ex-
tracted from the established chronic infection and adoptively transferred and expanded under acute infection. The extended dataset
was preprocessed in the same manner as the main dataset, resulting in a count matrix for 9274 genes in 28447 cells, including 4047
cells from the transfer sample. The analysis of this extended count matrix was performed in the same manner as with the main six
samples, resulting in clusters t0-t23. This cell clustering, restricted to the cells from the main six samples, was compared with the
previously obtained clusters, suggesting cluster t4 consisted of the progenitor and progenitor-like cells. The cluster composition
of each sample, calculated as fraction of cells in each sample that belongs to each cluster, was also compared between samples,
suggesting the sample “transfer_acute_d07” was most similar to the sample “chronic_d07.”

Allele-specific scRNA-seq expression

For allele-specific analysis, sScRNA-seq sequencing reads were re-aligned in allele-specific manner as previously described (van der
Veeken et al., 2019; Crowley et al., 2015). Briefly, the genetic variants of Spret mice were obtained from the mouse genome project
(Keane et al., 2011). A pseudo-Spret genome was built by modifying the reference genome with SNPs, insertions and deletions found
in the wild-derived inbred strain. The RNA-seq reads were aligned to the reference and pseudo Spret genomes in parallel using STAR
(Dobin et al., 2013) with the following parameter settings: “STAR-runMode alignReads-readFilesCommand zcat-outSAMtype BAM-
outBAMcompression 6-outFilterMultimapNmax 1-outFilterMatchNmin 30-alignintronMin 20-alignintronMax 20000-alignEndsType
Local.” Next, the genomic coordinates of pseudo-genome aligned reads were converted back to the corresponding B6 coordinates.
To determine the allelic origins of the reads, the mapping scores of the two alignments of each read were compared. We retained the
alignment with the highest score and generated the final BAM files. In cases where the diploid genome alignment produced identical
scores for both genomes, one of the alignments was selected randomly.

Spret- and B6-specific and ambiguous UMI counts of gene expression for each cell were obtained with custom scripts, in the same
manner as in the main analysis (see Single-cell RNA-seq data preprocessing, dimensionality reduction, clustering). Further analysis
was restricted only to cells and genes selected for the main scRNA-seq analysis. Library-size normalization for Spret- and B6-spe-
cific and ambiguous read counts was obtained applying the same scaling for each cell as in the main analysis. The allelic imbalance of
expression of each gene in each scRNA-seq cluster was defined as log2((w+ + 0.5 * wy) / (wo + 0.5 * wy)), where wg and w4 are B6- and
Spret-specific total library-size normalized counts for this gene in this cluster, respectively, and w; is the ambiguous count for this
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gene in this cluster. Significance of the allelic imbalance was assessed by a Mann-Whitney U test applied to all B6-specific versus all
Spret-specific library-size normalized gene expression estimates for this gene over cells in this cluster.

Allele-specific predicted TF binding

Spret sequences of bulk ATAC-seq peak summit regions, as defined above (see Construction of ATAC-seq peak atlas), were ob-
tained by introducing genetic variants between B6 and Spret into B6 sequences of these regions. To estimate allelic specificity of
predicted TF binding, FIMO was run for Spret sequences and rerun for B6 sequences of the peak summit regions with the same motif
collection as described previously (see Transcription factor motif analysis) with a relaxed p value threshold of 5e-3. All matches at p <
1e-4 in either B6 or Spret sequence were selected, and allelic imbalance of predicted TF binding for each motif in each peak summit
region was estimated as the difference between the total FIMO log odds score for all matches of this motif in Spret and in B6. Then the
distribution of these values for this motif across all peaks was z-score-normalized.

Analysis of the association of allelic imbalance of predicted TF binding and of scRNA-seq gene expression was performed for each
TF motif and each scRNA-seq cluster as follows. All predicted TF motif binding sites with substantially stronger predicted match at
Spret or B6 sequence were selected as those with z-score above 0.2 or below —0.2, respectively. Then the scRNA-seq allelic imbal-
ance in this cluster was compared between genes nearby B6-specific and Spret-specific predicted binding sites, with significance
assessed by Kolmogorov-Smirnov test.

CUT&RUN experiments

Terminal and progenitor dysfunctional cells were isolated from the spleens of 4 male B6/Spret F1 mice or B6 mice on day 35 post-
infection, based on expression of cell surface markers (see Adoptive transfer of progenitor dysfunctional cells). Cells from 2 mice
were pooled to generate biological duplicates with approximately 70,000 cells per replicate. CUT&RUN libraries were prepared as
described (Skene and Henikoff, 2017) with the modifications described below. Because Concanavalin-A (ConA) is a well-known
T cell mitogen, we avoided the use of ConA-coated beads for cell isolation and handling. 70k cells per replicate were collected in
a V-bottom 96 well plate by centrifugation and washed in antibody buffer (buffer 1 (1x permeabilization buffer from eBioscience
Foxp3/Transcription Factor Staining Buffer Set diluted in nuclease free water, 1X EDTA-free protease inhibitors, 0.5mM spermidine)
containing 2mM EDTA). Cells were incubated with TCF1 antibody for 1h on ice. After 2 washes in buffer 1, cells were incubated with
pA/G-MNase at 1:4000 dilution in buffer 1 for 1h at 4 degrees. Cells were washed twice in buffer 2 (0.05% (w/v) saponin, 1X EDTA-free
protease inhibitors, 0.5mM spermidine in PBS) and resuspended in calcium buffer (buffer 2 containing 2mM CaCl2) to activate
MNase. Following a 30 minute incubation on ice, 2x stop solution (20mM EDTA, 4mM EGTA in buffer 2) was added and cells
were incubated for 10 minutes in a 37 degree incubator to release cleaved chromatin fragments. Supernatants were collected by
centrifugation and DNA was extracted using a QIAGEN MinElute kit.

CUT&RUN libraries were prepared using the Kapa Hyper Prep Kit (Kapa Biosystems KK8504) and Kapa UDI Adaptor Kit (Kapa
Biosystems KK8727) according to manufacturers protocol with the modifications described below. A-tailing temperature was
reduced to 50 degrees to avoid melting of short DNA fragments and reaction time was increased to 1h to compensate for reduced
enzyme activity as described by Liu et al. 2018. Following the adaptor ligation step, 3 consecutive rounds of Ampure purification were
performed using a 1.4x bead to sample ratio to remove excess unligated adapters while retaining short adaptor-ligated fragments.
Libraries were amplified for an average of 15 cycles using a 10 s 60°C annealing/extension step to enrich for shorter library fragments.
Following amplification, libraries were purified using 3 consecutive rounds of Ampure purification with a 1.2x bead to sample ratio to
remove amplified primer dimers while retaining short library fragments. A 0.5x Ampure purification step was included to remove large
fragments prior to sequencing.

Identification of transcription factor binding sites in CUT&RUN data

CUT&RUN reads from B6 mouse samples were aligned to the genome using bowtie2 v2.3.4.3. Similar to RNA-seq, paired-end CU-
T&RUN reads from F1 B6/Spret mouse samples were mapped to the diploid genome using STAR with the splicing alignment feature
switched off. The command line was as follow: “STAR-runMode alignReads—-genomelLoad NoSharedMemory-readFilesCommand
zcat-outSAMtype BAM SortedByCoordinate—outFilterMultimapNmax 1-outFilterMatchNmin 40-outBAMcompression 6-outFilter-
MatchNminOverlLread 0.4-seedSearchStartLmax 20-alignintronMax 1-alignEndsType Local.” We only used the read pairs if their
fragment length was between 50 to 500 bp.

For analysis, we used two control IgG samples and biological replicates for TCF1 CUT&RUN, including two samples from B6 mice
and two samples from F1 B6/Spret mice. CUT&RUN and control reads were counted in 150bp windows around ATAC-seq peak sum-
mits. To estimate library sizes, control regions were obtained by shifting ATAC-seq peak summit regions by 2Kb in either direction,
extending the shifted segments by 500bp preserving their center, and excluding those that overlapped with ATAC-seq peak summit
regions, and then calculating control and CUT&RUN read counts in these control regions and using DESeq2 v1.22.2, as described
previously (Konopacki et al., 2019). Differential CUT&RUN count analysis was then run using DESeq2, identifying 3325 TCF1 binding
sites in the progenitor dysfunctional cells defined as ATAC-seq peak summit regions with significantly higher TCF1 CUT&RUN read
counts than IgG control (adjusted p value < 0.1). To produce heatmaps of TCF1 CUT&RUN signal around binding sites, bigWig files
and count matrices in bins around binding sites were produced using deepTools (Ramirez et al., 2016).
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Motif enrichment in TCF1 binding sites was estimated as log2FC of frequency of TCF1 binding sites with significant TCF1 motif
match (FIMO p < 1e-4) over such frequency for all ATAC-seq peak summit regions, with significance of enrichment estimated using
hypergeometic test followed by Bonferroni correction for multiple hypothesis testing.

Allele-specific analysis of CUT&RUN data

For the TCF1 binding sites, allelic imbalance of TCF1 binding was defined as log2((w1 + 0.5 * wy) / (Wg + 0.5 * wy)), where wo and w4 are
B6- and Spret-specific CUT&RUN counts, respectively, and w. is the count of ambiguously aligned reads. For the CDF plots of allelic
imbalance of TCF1 binding (Figure S13E), TCF1 binding sites with predicted stronger TCF1 motif batch in Spret or B6 were selected
as those with TCF1 motif match imbalance z-score above 0.1 or below —0.1, respectively. For the allele-specific TCF1 co-factor anal-
ysis, Spret- or B6-specific TCF1 binding sites were detected as those with log2FC of CUT&RUN read count in Spret over B6 above
0.5 or below —0.5, respectively. Then for these sets of allele-specific TCF1 binding sites, for each motif, co-factor motif enrichment
was calculated by comparing motif match imbalance z-scores against those in all ATAC-seq peak summit regions, with significance
estimated using hypergeometric test. Motif match imbalance z-scores were then plotted as a boxplot (Figure S13G) for all the motifs
that were detected as significant both for Spret- and B6-specific TCF1 CUT&RUN binding sites.

Construction of human ATAC-seq peak atlas and scATAC-seq count matrix

Bulk and single-cell ATAC-seq data for CD8 T cells in human donors and patients was obtained from three recent publications (Sade-
Feldman et al., 2018; Philip et al., 2017; Satpathy et al., 2019). Bulk ATAC-seq data (Sade-Feldman et al., 2018; Philip et al., 2017) was
processed in the same way as described above for mouse data. For scATAC-seq data (Satpathy et al., 2019), samples SU001_Tcell_
Post2, SU001_Tcell_Post, SU006_Tcell_Pre, SU008_Tcell_Post, SU008_Tcell_Pre, SUO09_Tcell_Post, SUO09_Tcell_Pre were
identified as those with large number of T cells profiled, according to metadata available at https://github.com/GreenleafLab/10x-
scATAC-2019. Fragment data for these samples was obtained from GEO and mapped from hg19 to hg38 coordinates using liftOver
tool from UCSC Genome Browser (Kent et al., 2002). Fragments associated with cells from T cell clusters 12-19 (Satpathy et al., 2019)
were likely corresponding to CD8 T cells and therefore were selected for further analysis. Pseudo-reads of length 30nt were created
for each start and end of the selected fragments, and MACS2 was run on this collection of pseudo-reads to identify accessibility
peaks. These peaks were merged with those from bulk ATAC-seq data analysis using function reduce(c()) in R, resulting in a list
of putative peaks. Overlaps of bulk ATAC-seq reads and scATAC-seq fragment ends (corresponding to Tn5 cut sites) in these peaks
were counted using Rsubread and findOverlaps(), respectively. Then peaks with at least total count of 50 in any of the three datasets
(two bulk ATAC-seq datasets and one scATAC-seq dataset) were selected, forming an atlas of 161,140 peaks. Of them, 40,449 or
36,241 peaks overlapped at least one mouse atlas peak or peak summit, respectively, when mapped to human genome using
liftOver().

Analysis of human scATAC-seq data
Count matrices for each of the seven human scATAC-seq samples obtained as described above were merged together, binarized,
and transformed using the TF-IDF transform, as done with the mouse scATAC-seq data. The nearest neighbor graph was computed
using the top 50 PCs and batch corrected by patient (SU001, SU006, SU008, SU009) using the batch balanced k-nearest neighbor
procedure (Polanski et al., 2020). Subsequent UMAP dimensionality reduction and Leiden clustering with a resolution of 0.8 were
performed on the corrected kNN graph.

Comparison of differential accessibility between mouse and human

Differential accessibility in human bulk ATAC-seq data between naive and dysfunctional cells, central memory and dysfunctional
cells, and progenitor and terminally dysfunctional cells was performed in the same manner as for mouse data. For comparison, differ-
entially accessible peak summit regions in mice between naive and dysfunctional cells and between central memory and dysfunc-
tional cells were selected as those with log2FoldChange > 1 and adjusted p < 0.001, between progenitor and terminally dysfunctional
cells in melanoma as those with log2FoldChange > 0.5 and adjusted p < 0.001. The selected differentially accessible peaks were then
mapped to human genome using liftOver() and overlapped with human peaks. For human scATAC-seq analysis, peak signatures ob-
tained from mouse bulk ATAC-seq data were mapped to human genome using liftOver() and then scored in human scATAC-seq clus-
ters, as described above for mouse scATAC-seq data analysis. For differential accessibility analysis between Leiden clusters 0 and 8,
scATAC-seq counts were aggregated over all cells in these clusters in each sample separately, and then these pseudobulk counts
compared between the two clusters treating each sample as a biological replicate (7 samples in each category) using DESeqg2.

RNA velocity analysis

Spliced and unspliced read counts for each sample were obtained by running cellranger followed by velocyto (La Manno et al., 2018),
using default mm10 genome. Then RNA velocity analysis for each sample was run using scvelo (Bergen et al., 2020). Only the cells
that were used in the main scRNA-seq analysis after filtering were used for the velocity analysis. Naive cells (from clusters 0, 7, 19)
were excluded from analysis of each sample. Genes for the analysis of each sample were selected using scvelo.pp.filter_genes() with
min_shared_counts = 30. Furthermore, for each sample except “chronic_d35_b6,” only those genes were used in subsequent
analysis that had Spearman correlation at least 0.8 between spliced counts and previously obtained F1 genome counts used in
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the main scRNA-seq analysis. RNA velocity analysis was run using function scvelo.tl.velocity() with mode = ‘deterministic’, imple-
menting the approach from the original single-cell RNA velocity publication (La Manno et al., 2018). Genes labeled as velocity genes
by scvelo.tl.velocity() were further filtered to include only those with R? of the fit (velocity_r2) above 0.3. This resulted in 36 genes for
sample “acute_d07,” 27 genes for “acute_d40,” 72 genes for “chronic_d07,” 22 genes for “chronic_d35” and 141 genes for “chron-
ic_d35_b6” that were used in constructing velocity vectors for velocity graph construction and projection to 2-dimensional UMAP.
Vector map visualizations were obtained using scvelo.pl.velocity_embedding_grid() with parameters arrow_size = 1, arrow_length =
3, density = 1, smooth = 0.7, min_mass = 3.

We suspect that the RNA velocity analysis in our data has a number of caveats. Insufficient sequencing coverage resulting in low
read counts, particularly for unspliced reads, may have caused only a small number of genes to be selected for the velocity analysis.
Furthermore, transcriptional differences across CD8 T cell functional and differentiation states captured in our scRNA-seq data may
be smaller than those between different cell types previously analyzed with RNA velocity analysis (La Manno et al., 2018; Bergen
et al., 2020). Finally, interpretation of the velocity vectors projected to 2-dimensional UMAP may be complicated, because of the
oversimplification from reducing the data to only two dimensions and thus overlaying potential differentiation trajectories. Altogether,
this may have contributed to noisier results of the analysis that are harder to interpret than those in previous publications (La Manno
et al., 2018; Bergen et al., 2020). Nevertheless, we observe consistently across samples that velocity is directed toward cells on the
right side of the UMAP, e.g., in cluster 1, which suggests these cells are more differentiated, consistent with their characterization as
terminally dysfunctional.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the details of quantifications and statistical analyses are fully described in the main text, figure legends, and Method details
section.
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Figure S1. Universal program of CD8 T cell dysfunction (related to Figure 1). A. Principal
component analysis (PCA) of library-size normalized ATAC-seq read counts in 150bp windows around
peak summits (functional cell state shown by color, data source by symbol) without batch-effect
correction. B. Distributions of distances between ATAC-seq vectors of read counts in 150bp windows
around peak summits. Distances were calculated in the two-dimensional PCA space built using 20000
most variable peak summit read counts, for pairs of samples in the same functional category (naive,
functional, dysfunctional), separately for pairs of samples from the same study and from different
studies, before and after batch effect correction. C. PCA of library-size normalized batch-effect
corrected ATAC-seq read counts in 150bp windows around peak summits (labels as in A) using 10000
most variable peak summit read counts. Here GLM-based batch effect correction used a factor
encoding the functional cell state using two values, for naive cells and all other cells. D. PCA of library-
size normalized batch-effect corrected RNA-seq read counts for 1000 genes with most variable counts
(functional cell state shown by color, data source by symbol). E. Scatter plot of differential expression
(RNA-seq log2FC, x-axis) and differential accessibility (mean ATAC-seq log2FC over all peaks
associated with a gene, y-axis) between functional and dysfunctional cells (computed as in D).
Significantly differentially expressed genes shown as black dots. Significantly differentially accessible
genes highlighted with red or blue color. F. “Diamond” plots of differential accessibility and differential
expression between functional and dysfunctional cells for transcription factors and for genes associated
with T cell activation, cytotoxicity, adhesion, and apoptosis. In each panel, left: library-size normalized
batch-effect corrected ATAC-seq read count log2FC for peak summits (diamond shown in color for
significantly decreased/increased, FDR < 0.05) of significantly differentially accessible genes; right:
log2 fold change of RNA-seq gene expression for the same genes. G. Cumulative distribution function
of differential accessibility (ATAC-seq log2FC) between naive and dysfunctional (left) or central memory
and dysfunctional (right) CD8 T cells in human donors or cancer patients. Shown are peaks
evolutionarily conserved when compared with peak summit regions in mice that were significantly more
accessible in naive or memory (blue) or dysfunctional (red) cells; background distribution is for all
peaks identified in human cells that were conserved with mouse peak summit regions (black); count

and p-value from Kolmogorov-Smirnov test against the background distribution.
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Figure S2. Progression from early or progenitor to terminal dysfunctional state (related to
Figure 1). A. Comparisons of differential accessibility results. Each plot is a scatter plot of log2FC of
library-size normalized batch-effect corrected ATAC-seq read counts in peak summit regions for two
differential accessibility analyses. Color (blue, red, dark gray) is used to highlight quadrants with peak
summit regions significantly differentially accessible in both pairwise comparisons. Counts in corners
indicate the number of such peak summits in each quadrant. Spearman’s correlation is calculated over
all such peak summits. B. Cumulative distribution function (CDF) of log-transformed quantile-
normalized library-size normalized batch-effect corrected ATAC-seq read counts from various studies in
5940 peak summits significantly more accessible in progenitor than terminally dysfunctional T cells and
in 2768 peak summits significantly more accessible in terminally than progenitor dysfunctional T cells in
chronic LCMV infection (Kolmogorov-Smirnov p < 2e-16 for all comparisons). C. First principal
component (PC1) of PCA for library-size normalized batch-effect corrected ATAC-seq read counts in
dysfunctional T cells from different studies (see Figure 1C). PCA was calculated based on significantly
differentially accessible peaks in different pairwise comparisons. For clarity, vertical random jiggle is
added. D. Scatter plots of differential expression (RNA-seq log2FC, x-axis) and differential accessibility
(mean ATAC-seq log2FC over all peaks associated with a gene, y-axis) between cell states.
Significantly differentially expressed genes shown as black dots. Significantly differentially accessible
genes highlighted with red or blue color. E. Cumulative distribution function of differential accessibility
(ATAC-seq log2FC) between progenitor (TIM3- CD39-) and terminally (TIM3+ CD39+) dysfunctional
TILs in human tumors. Shown are peaks evolutionarily conserved when compared with peak summit
regions in mouse melanoma model that were significantly more accessible in progenitor (blue) or
terminally dysfunctional (red) cells; background distribution is for all peaks identified in human cells that
were conserved with mouse peak summit regions (black); count and p-value from Kolmogorov-Smirnov

test against the background distribution.
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Figure S3. Predictive models of transcription factor association with chromatin accessibility
(related to Figure 2). A. Schematic of the negative binomial generalized linear regression analysis to
infer transcription factor (TF) associations with chromatin accessibility. B. Spearman correlations
between library-size normalized batch-effect corrected ATAC-seq read counts and model predictions
for each sample and each value of the regularization parameter. C. Inferred TF motif coefficients for
regressing library-size normalized batch-effect corrected ATAC-seq read counts in each sample, for
motifs corresponding to coefficients with the highest variance across samples, z-score normalized
within each row. D. Top: Boxplots of log2FC of RNA-seq gene expression between naive and effector
cells for genes associated with at least one peak significantly more accessible in naive than effector
cells and associated with at least one peak significantly more accessible in effector than in naive cells.
Left: default peak-gene associations (peak associated to the closest gene in genomic coordinates, if
this gene is within 50Kbp). Center: peak—gene associations defined using significant Hi-C contacts in
naive cells. Right: peak—gene associations defined using non-significant Hi-C contacts in naive cells.
Bottom: same analysis for naive vs. dysfunctional cells. E. Spearman correlation of inferred TF motif
coefficients across all antigen-experienced samples (left) and of TF motif match scores across the atlas

of peak summit regions (right).
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Figure S4. scATAC-seq analysis of CD8 T cells in acute and chronic infection (related to Figure
3). A. Barplot showing the number of cells in each cluster from each sample. B. Components 2 and 3 of
the UMAP representation of TF-IDF-transformed scATAC-seq data with Louvain clusters. C. Heatmap
for single cells in scCATAC-seq data, separately for acute and chronic infection, showing the naive cell
signature derived from bulk ATAC-seq data. D. Violin plots for scores in scATAC-seq data clusters,
separately for acute and chronic infection, of peak signatures (for naive cells, memory cells) derived
from bulk ATAC-seq data. E. Violin plots for scores in scATAC-seq data clusters 1-8, 10, 13, separately
for acute and chronic infection, of peak signatures (for effector cells, memory precursor cells, terminally
dysfunctional cells) derived from bulk ATAC-seq data. F. Inferred TF motif coefficients for scATAC-seq
counts averaged over cells in each cluster in each of the two samples. Inferred coefficients with the

highest variance are shown (z-score row normalized).
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Figure S5. scATAC-seq analysis reveals a similar population of precursor/progenitor cells in
acute and chronic infection (related to Figure 3). A. Genome browser tracks of ATAC-seq data for
selected peaks. Bulk ATAC-seq for progenitor and terminally dysfunctional cells, and for terminal
effector and memory precursor cells. Normalized aggregated single-cell ATAC-seq for cells in each
cluster (for clusters 1-8, 10) in each of the two samples. For genes significantly more accessible in
SscATAC-seq cluster 10 as compared with other clusters. B. Differential accessibility of genes in cluster
10. Each panel shows normalized scATAC-seq pseudo-count (averaged over cells in each cluster in
each sample) log2 fold change for peak summits of significantly differentially accessible genes; mean
log2FC value is highlighted (with a shade of red) for genes that were overall differentially accessible.
Shown are comparisons between cells in cluster 10 and cells in clusters 1-8, separately for acute and
chronic infection, for genes highlighted in Figure 1E. C. Same as B, but for the most significantly
differentially accessible genes between cells from acute and chronic infection within cluster 10. D.
UMAP for scATAC-seq of CD8 T cells from human cancer patients (Satpathy et al. 2019). Top and
bottom left: patient label and treatment status of each sample. Top right: clusters identified in the
original publication. Bottom right: newly identified clusters (Methods). E. Comparison of new clusters
with those from the original publication. Shown is a fraction of cells in each of the published clusters
that belong to each of the new clusters 0-8. F. Violin plots for scores in new human scATAC-seq
clusters 0-8 of peak signatures derived from bulk ATAC-seq data in mice. Shown are comparisons of all
clusters (left) and of the cluster with the highest median score against the union of all other clusters
(right). The results suggest a classification of cluster 8 as progenitor dysfunctional cells, and cluster 0
as terminally dysfunctional cells. G. Differential accessibility of genes between new human scATAC-seq
clusters 0 and 8. Shown are normalized scATAC-seq pseudocount log2 fold changes for peaks of
selected genes with at least one significantly differentially accessible peak (color, FDR < 0.1). Most
genes show the trend similar to that in differential bulk and single-cell ATAC-seq signal between
progenitor and terminally dysfunctional cells in mice, with only a few notable exceptions (e.g. KLRG1,
SLAMFG6, LEF1).



Figure S6

Isolation of CD8 T cell subsets from LCMV Armstrong infected mice
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Figure S6. Sorting for CD8 T cell subpopulations for scRNA-seq profiling (related to Figure 4). A-
B. Sorting strategy for isolating CD8 T cells responding to acute and chronic LCMV infection. C. Protein

expression in cells isolated from chronic infection.
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Figure S7. Dimensionality reduction and visualization of scRNA-seq data (related to Figure 4). A.
Principal component analysis (PCA) of library-size normalized batch-effect corrected ATAC-seq read
counts in 150bp windows around peak summits (functional cell state shown by color, data source by
symbol), including samples from naive, effector, and memory cells from hybrid F1(B6xSpret) mice. This
analysis suggests that CD8 T cell functional states are similar between hybrid and B6 mice. B.
Projections of three-dimensional UMAP representation of library-size normalized scRNA-seq data. C.
Log-transformed gene expression (library-size normalized scRNA-seq UMI counts) on UMAP. D.
Cluster composition of samples. Heatmap showing for each cluster what fraction of cells that cluster
occupies in each sample. E. Boxplot of the kNN graph distances from cells in samples “chronic_d35”
(left) and “chronic_d35_b6” (right) to cells in other samples. For each cell C, average distance in the
kNN graph from C to cells in each sample was calculated, and distribution of these values across cells
C was plotted. F-H. Results of dimensionality reduction methods applied to normalized scRNA-seq

data.
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Figure S8. Differential expression analysis of scRNA-seq data (related to Figure 4). A. Average
scRNA-seq gene expression (library-size normalized UMI counts, z-score row normalized) across
clusters for 261 differentially expressed genes obtained as the union of three overlapping gene sets:
genes significantly overexpressed in a cluster as compared with a union of all other clusters (top 20
genes per cluster, log2FC > 0.7, adjusted p-value < 0.001, total 224 genes), genes significantly
overexpressed in a non-naive-cell cluster as compared with a union of all other non-naive-cell clusters
(top 20 genes per cluster, log2FC > 1.0, adjusted p-value < 0.001, total 188 genes), genes significantly
differentially expressed between a pair of non-naive-cell clusters (top 5 genes, log2FC > 1.5, adjusted
p-value < 0.001, total 98 genes). B. Barplots of scRNA-seq gene expression log2 fold change values
for top 30 genes significantly differentially over-expressed and under-expressed in each cluster. C.
MAGIC-imputed gene expression for selected genes. D. Fraction of cells classified as naive (clusters 0,

7, 19) in individual samples.
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Figure S9. scRNA-seq cluster 9 consists of precursor/progenitor cells in acute and chronic
infection (related to Figure 4). A. ssGSEA association of library size-normalized batch effect-
corrected bulk RNA-seq data with library size-normalized scRNA-seq data averaged over cells in each
cluster (z-score column normalized). Clusters 0, 7, 19 were most strongly associated with naive cells,
clusters 2, 10, 13 with memory cells, clusters 1, 3, 11, 12, 18, 21 with late and terminally dysfunctional
cells, clusters 4, 5, 6, 8, 14, 15, 17, 20 with effector and early and progenitor dysfunctional cells,
clusters 9 and 16 with progenitor cells and with early dysfunctional cells. B. Average scRNA-seq gene
expression (library-size normalized UMI counts) in each cluster for genes significantly overexpressed in
cluster 9 as compared with all other cells and as compared with all other cells except naive cells
(clusters 0, 7, 19). C. Fraction of cells that belong to cluster 9 in individual samples. D. MAGIC-imputed

gene expression in individual samples.
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Figure S$10. Analysis of published scRNA-seq data confirms presence of progenitor-like subset
at d7 in acute LCVM infection (related to Figure 4). Enrichment of progenitor markers in a cluster of
cells profiled at d7 in acute LCMV infection in three studies (Yao et al. 2019, Kurd et al. 2020, Chen et
al. 2020) (A-C). Shown are significant (g < 0.01) log2 fold change values of expression in a selected
cluster as compared with cells from all other clusters, as identified by diffxpy (barplot, rightmost
column). Clusters occupying at least 1% of the total data set are labeled on UMAP (third column).

UMAP and clustering of the whole dataset are shown (leftmost two columns).
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Figure S11. RNA velocity analysis (related to Figure 4). A-E. Vector maps of RNA velocities (left)
and cell cycle gene signature scores (right) are shown for scRNA-seq samples “acute_d07” (A),
“acute_d40” (B), “chronic_d07” (C), “chronic_d35” (D), and “chronic_d35_ b6” (E). F-G. Phase maps of
unspliced and spliced read counts (left), RNA velocities (middle), and gene expression values
(averaged over nearest neighbors in the KNN graph, right) for selected genes in cells from samples
“acute_d07” (F) and “chronic_d35” (G).
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B 1 2 3 5 9 10 11 12 16 18
imbalanced |
to Spret I l _”'_ —|I |— —|“— —|I|— _m_ _m_ _[['_ _[I]_
imbalanced
G Ve | e (o e 0 e i B
21012 21012 21012 21012 21012 21012 21012 21012 —=2-1012 —=2-101 2
cluster-aggregated scRNA-seq log2(F1 hybrid / B6)
Bach,Batf,Fos,Jdp2,Jun,Nfe2l2,Smarcc Elf,Elk,Ets,Etv,Fli1,Gabpa
promoter targets all targets
cluster 3 cluster 10
3 I _ 21 ,
11 © 10 N T e
5 S 7 14 S 7
: = i ]
16 =
8 3 8 = 3
20 B 154 12 - 7 887 p<0.001
18 ° — 134 | P00 1 o | — 707
12 S 7\ T T T T 20 c T T T T T
1? -1.0 00 05 1.0 13 -1.0 00 05 1.0
14 scRNA-seq allelic imbalance 19
12 ] log2(Spret / B6) 3 H
2
1 11
12 genes with 12
stronger binding
10 ) 9
in Spret
X LI B B |
c}\)% 889&8":\1’8 lgeneswith' O - N ® <
S S S S o6 oo isr:rgggerblndmg ©O © ©o o o o
scRNA-seq
allelic imbalance difference
E Mef2a/d
promoter targets
9
1
8
3
17
1 cluster 2
o |
S
<
S
o : _g; p<0.04
o T T T T T
-1.0 00 05 1.0




Figure S$12. Allele-specific analysis of TF binding and scRNA-seq data (related to Figure 5). A.
Allelic imbalance of gene expression in clusters of sScRNA-seq data (color, p < 0.05, Mann-Whitney U).
B. Boxplots of differential expression (log2 fold change) between cells within the same scRNA-seq
cluster profiled at d35 in chronic infection in B6 and in B6/Spret F1 mice, for genes with significant
allelic imbalance towards B6 or Spret in B6/Spret F1 mice. Cluster number indicated on top of each
boxplot. Significant difference between log2FC distributions (p < 2e—4 for clusters 2, 5, 10, 18, p < 2e—
16 for all other clusters, Mann-Whitney U test) in all cases. C-E. Allelic specificity expression analysis of
scRNA-seq data. CDF plots: allelic imbalance between B6 and Spret of library-size normalized scRNA-
seq counts aggregated over cells in a selected cluster, for genes predicted to be bound more strongly
in B6 or Spret using sequence motif analysis in 150bp windows around summits of their promoter
peaks. Barplots: summary of the above analysis for each TF motif over all clusters; black bar indicates

significant association (Kolmogorov-Smirnov p < 0.05).
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Figure S13. CUT&RUN in progenitor dysfunctional CD8 T cells from B6/Spret F1 hybrid mice
maps allele-specific TCF1 binding (related to Figure 5). A. Normalized TCF1 CUT&RUN signal in
TCF1-bound ATAC-seq peak summits (library-size normalized read counts in 50bp bins in 3000bp
window around peak summit, ordered by total signal). B. Log2 fold change enrichment of motif
frequency in TCF1 CUT&RUN peaks relative to all ATAC-seq peak summits. C. Examples of TCF1
binding sites. D. Genome browser tracks of bulk ATAC-seq for progenitor and terminally dysfunctional
cells and TCF1 CUT&RUN in progenitor dysfunctional cells for selected loci. E. CDF curves for allelic
imbalance of CUT&RUN signal between B6 and Spret for all TCF1 targets (black) and for those
predicted to be bound more strongly in B6 (purple) or Spret (orange) using sequence motif analysis. F.
Top: CDF plots of library size-normalized batch effect-corrected ATAC-seq signal for TCF1-bound sites
vs. all ATAC-seq peak summits. Bottom: CDF plots of library-size normalized batch-effect corrected
RNA-seq gene expression for genes with TCF1 binding vs. all expressed genes. Shown is the
comparison between progenitor and terminally dysfunctional cells in chronic LCMV infection. G.
Imbalance of predicted TF binding using sequence motif analysis in peaks with stronger TCF1 binding
in B6 or in Spret allele as identified by CUT&RUN.
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