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CRISPR–Cas9 genome editing1,2 can be used for both straightforward 
disruption of single protein-coding genes and genome-wide loss-of-func-
tion screens3–6. However, disruption of noncoding RNA or DNA elements 
using CRISPR–Cas9 remains limited6–9 because it usually requires the 
concomitant expression of two gRNAs to engineer deletions8,10. Although 
there has been progress toward making the construction of paired-gRNA 
vectors scalable11, the absence of tools to design paired-gRNA libraries 
has hampered progress toward genome-wide non-coding genetic screens. 
To overcome this limitation we developed GuideScan, an open-source 
software package that allows users to construct comprehensive and fully 
customizable gRNA databases for any genome or CRISPR endonuclease 
and design paired- and single-gRNA libraries (Fig. 1a).

The first step in building a gRNA database is identifying the targeta-
ble genome space. To accommodate different CRISPR endonucleases 
with distinct specificity requirements, GuideScan allows the user to 
define target sequences by setting the values of three parameters: the 
protospacer-associated motif (PAM), the PAM position relative to the 
gRNA binding sequence, and gRNA length12 (Fig. 1a, middle panel). 
Non-canonical PAMs can also be specified, since they can be recog-
nized and cleaved by CRISPR proteins with some efficiency and thus 
may contribute to off-target cutting.

Next, gRNA sequences that can lead to cleavage of multiple genomic 
loci need to be identified and removed. Because CRISPR endonucleases 
can tolerate single mismatches in gRNA–DNA pairing13, gRNAs that have 
less than two mismatches to off-target loci are typically avoided14. Third-
party alignment tools are often used to identify potential off-target loci in 
the genome, but we and others12 have found that they are unable to return 
all mismatch neighbors (data not shown) and thus consistently underesti-
mate the number of potential off-target sites for a given gRNA15.
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We present GuideScan software for the design of CRISPR guide 
RNA libraries that can be used to edit coding and noncoding 
genomic regions. GuideScan produces high-density sets of 
guide RNAs (gRNAs) for single- and paired-gRNA genome-wide 
screens. We also show that the trie data structure of GuideScan 
enables the design of gRNAs that are more specific than those 
designed by existing tools. 

Rather than using an alignment tool, GuideScan uses a retrieval 
tree (trie) data structure, which efficiently and precisely enumerates 
all targetable sequences present in a given genome (Fig. 1a, right 
panel). Traversals of the trie allow for the computation of sequence 
mismatch neighborhoods, which are used to construct databases of 
gRNAs whose target sites are unique in the genome up to a user-
defined number of mismatches (M). Additionally, for gRNAs in  
the database, more degenerate target sequences – up to Q (Q > M)  
mismatches – can be correctly enumerated, and stored in the  
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Figure 1 The GuideScan gRNA design tool. (a) Overview of GuideScan. Left, 
GuideScan takes as input a FASTA file containing any genome of choice. 
Middle, targetable sequences are defined by choosing the PAM sequence(s) 
(Cas9’s canonical PAM, red; non-canonical PAM, blue), its position relative 
to the gRNA, and the length of the gRNA (gray box). Right, targetable 
sequences are indexed in a retrieval tree (trie), and associated information 
is stored at leaf nodes. R, trie root node. (b) Distributions of combined 
distance of flanking gRNA-pairs to the boundaries of selected noncoding 
genomic features using GuideScan (blue) or mit.edu genome-wide tracks 
(red). (c,d) Example deletions of genomic regions containing RNA (c) and 
DNA (d) noncoding elements using pairs of gRNAs designed by GuideScan. 
gRNA sequences, blue and red; PAM sequences, bold underlined. The 
predicted sequence after deletion, the sequences of three edited alleles, and 
a representative chromatogram are shown for each targeted locus.
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database as potential off-target loci. Each gRNA can be further annotated  
with additional information, including on-target efficiency  
scores13 and the genomic feature(s) it overlaps with (for example, 
exon, intron, intergenic region). Once constructed, the database 

allows efficient individual or batch queries of genomic coordinates 
for single or paired gRNA designs.

To validate GuideScan, we generated a murine Cas9 database with 
M = 1. This database contains over 1.7 × 108 gRNAs, with an average  
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Figure 2 GuideScan correctly enumerates off-target sequences and filters out promiscuous gRNAs. (a) Number of murine gRNAs (20 mers) designed by 
each tool for a random sample of protein-coding genes, noncoding elements, and repetitive regions. Number of gRNAs with off-target sites within at least 
two mismatches from gRNA (black), within a single mismatch (white), and with perfect off-target sites (red). OT, off-target. (b) Number of perfect off-target 
sites for the gRNAs designed by each tool. Each dot represents a gRNA (mean, red line). (c) Cumulative distribution of specificity scores for the gRNAs 
designed by each tool. (d) T7 cleavage assay for gRNAs having a single (black, on-target site) or multiple (red, on-target site; blue, perfect off-target site) 
perfect matches in the genome. Position of the cleavage substrates, filled triangles; position of cleavage products, open triangles. Estimated total editing 
(TE) at each site is shown below the corresponding lane. (e) Left, schematic representation of the chromosomal locations of three perfect target sites of a 
gRNA labeled highly specific by competitor tools (mit.edu score = 78). Right, PCR-based identification of chromosomal translocations between all three 
targets. +, gRNA; – empty plasmid. (f) Left, schematic representation of the position of three perfect target sites—all within chromosome 2—of a gRNA 
labeled highly specificly by competitor tools (mit.edu score = 89). Genomic sequence: target sites, red; PAM sequence, bold. Right, PCR-based identification 
of chromosomal deletions between target sites. Position of the wild-type amplicon, filled triangle; position of deletion amplicons, open triangle. +, gRNA; –, 
empty plasmid. Gels in d and e were cropped from full-length versions shown in Supplementary Figure 2.
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distance of 15.5 nucleotides between gRNAs designed over autosomes, 
and is two orders of magnitude larger than the genome-wide gRNA 
database, provided by mit.edu as a UCSC genome browser track 
(Supplementary Fig. 1a and Supplementary Note).

To test if using Guidescan translated into a better practical outcome 
in terms of designing gRNAs for precise genomic deletions in the non-
coding genome, we took the coordinates of mouse CTCF binding sites, 
enhancers, miRNAs, and lncRNAs and used GuideScan or the mit.edu 
genome-wide UCSC track gRNA database to design pairs of gRNAs 
against each target site. We found that the combined median distances 
of the GuideScan gRNA pairs to the feature boundaries were 29, 31, 
24, and 27 base pairs (bp) respectively, compared with 781, 783, 716 
and 774 bp when using gRNAs from the mit.edu genome-wide track 
(Fig. 1b). Thus, databases generated by our tool are suitable for the 
engineering of precise genomic deletions and the generation of loss-
of-function alleles for noncoding regulatory elements (Fig. 1c,d).

To further benchmark GuideScan, we compared it to three widely used 
gRNA design tools: the mit.edu web interface14 (Supplementary Note), 
CRISPRscan10, and E-CRISP16. Unlike GuideScan these tools do not pro-
vide direct access to the underlying databases, so we queried 150 regions 
in the mouse genome overlapping randomly selected protein-coding 
genes, noncoding elements, and repetitive regions. All tools returned 
distinct but overlapping sets of gRNAs (Fig. 2a and Supplementary 
Table 1), and surprisingly all except for GuideScan returned a substan-
tial fraction of guides having more than one perfect target site (Fig. 2a 
and Supplementary Table 2). In the most extreme cases, individual 
gRNAs had more than 30,000 perfect off-target sites (Fig. 2b) that were 
missed by the corresponding design tool (Supplementary Table 1) and 
consequently were not considered when calculating the gRNA’s specifi-
city score. In fact, gRNAs with more than one perfect target site were 
roughly equally distributed between low (26%), medium (37%), and 
high (37%) specificity score categories according to the output of the 
mit.edu web interface11 (Supplementary Fig. 1b).

In addition, the competitor tools that we tested underreported 
the number of off-target sites with single mismatches to the gRNA 
(Supplementary Table 1). Based on these observations we predicted that 
gRNAs returned by GuideScan should have, on average, greater specificity 
than gRNAs reported by the other tools. To test this prediction, we used 
GuideScan’s trie function to enumerate all potential off-target loci (Q = 3) 
for the gRNAs designed by all tools, and calculated the likelihood of cleav-
age at these sites using a recently reported metric that takes into account 
the number, position, and nature of mismatches13. We then used these val-
ues to calculate the aggregate specificity score for each gRNA, as previously 
described14. We found that gRNAs designed by GuideScan had on average 
significantly higher specificity scores than those returned by the mit.edu 
web interface (P < 2.2 × 10−16; D = 0.22; Z = 7.38) or by CRISPRScan (P 
< 2.2 × 10−16; D = 0.25; Z = 6.59) (Fig. 2c). E-CRISP and GuideScan had 
similar distribution of specificity scores, but E-CRISP returned an order-
of-magnitude fewer gRNAs, some of which had multiple perfect or near-
perfect matches in the genome (Fig. 2a,b and Supplementary Table 2).

Failure to discard gRNAs with multiple perfect target sites has impor-
tant implications in the design and interpretation of gene editing experi-
ments. The number of double-strand breaks induced by a gRNA in a 
single cell correlates well with gene-independent gRNA depletion, and is 
a major source of noise in negative-selection screens17. Thus, the correct 
identification and filtering of promiscuous gRNAs is crucial for designing 
effective CRISPR libraries. Furthermore, unknowingly using gRNAs with 
multiple perfect target sites can result in highly efficient gene editing at 
undesired sites (Fig. 2d) as well as the generation of chromosomal rear-
rangements18 such as translocations (Fig. 2e) and deletions (Fig. 2f) that 
include the desired cleavage site and the unknown additional sites.

To facilitate the construction of single and paired gRNA librar-
ies, we have released a web interface that includes access to pre-
computed genome-wide Cas9 and Cpf1 gRNA databases for many 
model organisms (http://www.guidescan.com/). This website allows 
users to input coordinates of genomic features in batch, to choose 
between designing single internal gRNAs or pairs of flanking gRNAs, 
and retrieve for each genomic coordinate a pre-defined number of 
gRNAs or gRNA pairs.

Collectively, these data show that GuideScan is a substantial improve-
ment compared with existing gRNA design tools. We expect that this 
tool will facilitate ongoing efforts aimed at deducing functions of coding 
and the noncoding parts of genomes.

MethodS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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oNLINe MethodS
Command line gRNA database generation. To generate a customized 
genome-wide gRNA database for a given CRISPR system the user supplies 
the target genome as a FASTA file and specifies parameters such as desired 
gRNA length, PAM position with respect to gRNA, canonical and alternative 
PAM sequences, Hamming distance (M) for which gRNAs are required to 
have a unique target site in the genome, and Hamming distance (Q) for which 
potential off-target sites will be enumerated. Like other methods, the algorithm 
scans a genome for canonical and alternative PAM sequences and identifies 
all k-mers associated with them19. The full universe of these k-mers and PAM 
sequences with their coordinates are written out to a temporary file along with 
a count of how often a particular k-mer occurs in the genome. At the next 
stage, the algorithm analyzes the list of k-mers and determines which of these 
k-mers constitute potential gRNAs. A trie of all k-mers is constructed. The trie 
stores a user-defined maximum number of k-mer coordinates. If and only if a 
k-mer occurs with a canonical PAM uniquely in the genome then it is initially 
labeled as a candidate gRNA. However, if the k-mer occurs more than once 
in the genome or occurs with an alternative PAM, then it is labeled as a non- 
candidate gRNA. These non-candidate gRNAs are written out to ‘blacklist’ files, 
which define why a k-mer was rejected as a candidate gRNA. Furthermore, 
the algorithm ensures that each gRNA has a unique target in the genome up 
to M mismatches, thereby forcing all candidate gRNAs to be distinct from 
one another by at least M mismatches. This task is accomplished through trie 
traversals, where for each candidate gRNA sequence a mismatch neighborhood 
(which in this case is the set of inexact matches to the candidate gRNA up to 
M mismatches) is assessed. If even one mismatch neighbor sequence is found 
for a given candidate gRNA, then this gRNA is not unique in the genome up 
to M mismatches and is therefore relabeled as a non-candidate gRNA and 
written to the ‘blacklist’ file. The gRNAs that are unique in the genome up to 
M mismatches can have off-target sites completely enumerated up to Q (where 
Q > M) mismatches. Off-target information for candidate gRNAs is again 
determined by trie traversals and computing the mismatch neighborhood for 
a given gRNA sequence. By construction, the gRNAs undergoing off-target 
enumeration have no off-target sites within M mismatches, and so if an inexact 
match to the gRNA sequence with P mismatches is found, such that M < P ≤ Q,  
then the number of times this off-target sequence occurs, its Hamming dis-
tance P, and coordinates for a user-defined number of off-target are recorded. 
Candidate gRNAs are written from the trie to a file in sequence alignment map 
(SAM) format20. This file has the gRNA sequence as a unique identifier as well 
as off-target information for the gRNA stored in a hex-byte array. SAM tags 
record a maximum count of off-target sites, the distance for which off-target 
sites were searched, and the hex-byte array of off-target sequences and their 
coordinates. This SAM file is then converted to a BAM file and indexed so 
that it can be quickly accessed using Samtools.

Database cutting efficiency scores. Cas9 guideRNA databases can be enriched 
with additional information such as on-target cutting efficiency scores.  
We adopt the scores defined by Doench et al.13. Rule Set 213 Scores are com-
puted for each gRNA and added to the previously constructed database. This 
rule set predicts on-target gRNA cutting efficiency using a learned boosted 
regression tree model. The input for this model requires a 30-mer sequence, 
only assesses cutting efficiency for 20-mer gRNAs, and only predicts cutting 
efficiency for gRNAs with the canonical Cas9 PAM sequence (NGG).

Database cutting specificity scores. A database BAM file, composed of Cas9 
gRNAs with 20-mer complementary region and NGG PAM, can be supple-
mented to include gRNA specificity scores. Specificity scores for gRNAs are 
based on the Doench et al. CFD model13, which computes the likelihood of a 
gRNA cutting at each individual off-target site using an experimentally derived 
mutation matrix. Specifically, for a given gRNA, GuideScan enumerates all its 
neighbors up to Q mismatches, calculates the CFD score for each neighbor, 
and then multiplies that score by the number of times the neighbor occurs in 
the genome. It then aggregates the CFD values into a single composite score 
using the formula used by Hsu et al.14: 

Specificity Score =
∗=∑

1

1CFDi ii
n q

Here, n represents the number of unique targetable sites within up to z mis-
matches. The desired on-target site (z = 0) is included in this computation and 
will give a CFD value of one. The value qi represents the number of times the ith 
neighbor occurs in the genome. For a unique target site up to z mismatches, the 
specificity score would be 1 since CFD = i = n = qi = 1. The resulting composite 
specificity score is written out to a text file along with information such as the 
target sequence and target coordinates. These scores are then added to the 
BAM file as a new SAM tag. Importantly, because the GuideScan algorithm is 
general and allows the construction of gRNA databases for distinct enzymes 
and distinct gRNA lengths, specificity scores are not automatically computed. 
If a user chooses to compute these scores, GuideScan first determines whether 
the database conforms to the parameters required for CFD scoring, and if so 
computes the aggregate specificity score for each gRNA in that database. For 
the specificity scores in the pre-computed Cas9 databases on the GuideScan 
web-interface, the parameters z = Q = 3 were used.

Database query and gRNA annotations. The algorithm allows for the direct 
query of the BAM file database using PySam (python interface to samtools; 
https://github.com/pysam-developers/pysam) and allows for the lookup of 
gRNAs by genomic coordinates. The output contains the gRNAs in the queried 
region, off-target information, predicted Rule Set 2 cutting efficiency score 
and specificity score if appropriate, as well as the exon annotation of on-target 
gRNA and off-target cut sites. The exon annotation relies on the creation of an  
interval tree constructed from a BED file containing genome-wide exon coor-
dinates. Consequently, the exon annotation for gRNAs is done at the time of 
database query.

Code availability. The code is freely available at guidescan.com, in 
Supplementary Code and at bitbucket (bitbucket.org/arp2012/crispr-project/
overview). Version v0.0.4 of the code was used to generate the data presented 
in this manuscript.

Web server implementation. The algorithm was run on a select set of model 
organisms, as well as on human genome, to produce gRNA databases where 
all constituent gRNAs are unique in the genome up to two mismatches. These 
databases are accessible through a web interface that allows for batch queries 
by genomic coordinates. The website allows the user to find gRNAs within 
a genomic region or flanking a genomic region and allows the output to be 
sorted according to either number of off-target sites, distance to target site,  
cutting efficiency score, or target specificity score. The website utilizes the 
database query ability of our algorithm to rapidly report gRNAs for user 
defined regions and achieves its functionality through CherryPy, a python 
web framework (http://www.cherrypy.org/).

Tool comparisons. The comparisons shown in Figure 1b were done using the 
coordinates of mouse CTCF binding sites, enhancers, miRNAs, and lncRNAs 
retrieved from the following publications19,21–24. The outputs of GuideScan, 
crispr.mit.edu web portal14, CRISPRscan10, and E-CRISP16 were compared 
on sequences overlapping randomly chosen protein-coding genes, noncod-
ing genomic elements, and repeat masked regions. We limited our test to a 
total of 150 sequences (50 protein-coding genes, 50 noncoding elements, 50 
repeat masked regions) from mm10 (the most recent assembly of M. musculus 
genome) because the input limits (file size/ number of sequences) associated 
with some of these tools made larger scale comparisons impractical. Similarly, 
we limited the size of the test sequences to 150 base pairs due to input lim-
its of some of the tools. The genomic coordinates of the sequences used in 
these comparisons are provided in Supplementary Table 3. Importantly, the 
CRISPRscan tool provides both 19-mer and 20-mer gRNA designs. For the 
purpose of this experiment we limited our analysis to 20 mers because they 
could be directly compared to the gRNA designs provided by the remaining 
softwares. The number and type of off-target sites for each gRNA was deter-
mined by querying GuideScan’s software package intermediate kmers file and 
independently through a R query of BSgenome mm10 version.

Statistical methods. A one-sided Kolmogorov–Smirnov test was used to com-
pare the specificity scores of 1,839 GuideScan gRNAs against 267 E-CRISP 
gRNAs, 1,189 CRISPRScan gRNAs, and 2,641 MIT gRNAs; P values were 
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computed using the ks.test function in R. Additionally, the effect sizes (Z) of 
these comparisons were reported using the formula 

Z D n n
n n

= ∗
+

1 2
1 2

where D is the Kolmogorov–Smirnov statistic equaling the maximum differ-
ence between empirical CDF functions of the two samples in the comparison, 
and n1 and n2 are the sample sizes.

DNA constructs. Paired-gRNA vectors to generate deletions of DNA 
and RNA noncoding elements were cloned as previously described11. 
Briefly, s/mU6 oligos carrying the sequence corresponding to two gRNAs 
for each locus (miR-290~295: gRNA1, TAGTACATCGGTCTAACTCA; 
gRNA2, GTTGAGACTAAAGGTAATCC. Enhancer element: gRNA1, 
AGCTACCCCGTAACCAAGTG; gRNA2, AAGGCCATATAGTTGTCGCC) 
were PCR amplified and cloned into BsmBI-digested lentiCRISPRv1 vector 
(Addgene #49535) using pDonor_sU6 intermediate vector (Addgene #69351). 
Single gRNAs were cloned into BsmBI-digested lentiCRISPRv1 vector using 
standard oligo cloning protocols.

Cell culture and detection of genomic editing. The V6.5 Mouse Embryonic 
Stem cells (obtained from Rudolf Jaenisch) were tested for germline transmission 
and for the absence of mycoplasma infection. These cells were grown on a mon-
olayer of irradiated mouse embryo fibroblasts at 37 °C (5% CO2) in KnockOut 
DMEM media (Gibco) supplemented with 15% FCS, l-glutamine (2 mM),  
penicillin (100 U ml−1), streptomycin (100 µg ml−1), and LIF (103 U ml−1).  
To generate genomic deletions, paired-gRNA vectors were transfected using 
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocols. 
Cells were collected in lysis buffer (100 mM Tris-HCl pH8.5, 200 mM NaCl, 
5 mM EDTA, 0.2% SDS and 100 ng ml−1 proteinase K) 6 d after transfection, 
and genomic DNA extracted using phenol-chloroform followed by ethanol 

precipitation. Genomic deletions were detected by PCR using primers flank-
ing the gRNA cut sites (miR_fwd: AGGGAGGAACGAGCCTATGT, miR_rev: 
GCATGCCTAAATCCCAAGAG; enh_fwd: GTGGCTCAGTGTTTCCCATT, 
enh_rev: CAGGCAAACTCTCCCATGTT). PCR bands corresponding to the 
genomic deletions were cloned into the Topo Blunt II vector (Invitrogen) and 
plasmid DNA from individual bacterial clones subject to Sanger sequencing.

To test cleavage and rearrangements produced by single gRNAs, 293T cells 
(obtained from American Type Culture Collection ATCC, cultured under 
standard conditions, and tested negative for mycoplasma contamination) 
were plated on 12-well-plates (Corning). Constructs expressing individual 
gRNAs were transfected into cells the following day using lipofectamine 2000 
(Invitrogen) and transfected cells selected with puromycin (4 µg ml−1) for 2 d.  
Four days following transfection, genomic DNA was extracted as above and 
used to determine total cleavage and generation of genomic rearrangements. 
Total editing at perfect target sites was determined using a T7 endonu-
clease assay. Briefly, target sites in a pool of transfected cells were ampli-
fied by PCR, and 200 ng of resulting amplicon were used to generate DNA  
heteroduplexes. The resulting molecules were incubated with 10 U of T7 
endonuclease (NEB) for 15 min, and the product of the digestion run on a 2% 
agarose gel. Total editing estimates were calculated as previously described25. 
Sequences or gRNAs and primers used in these experiments are shown  
in Supplementary Table 4.
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