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Abstract

The availability of functional genomics data sets for numerous organisms provides

an opportunity to comprehensively analyze the roles proteins play in the functional

organization of the cell.

In the first part of this thesis, we study how simple network features of hub

proteins (i.e., those with many physical interactions) are predictive of their roles in

the functional organization of the cell. We begin by examining an influential but

controversial characterization of the dynamic modularity of the S. cerevisiae inter-

actome that incorporated gene expression data into network analysis. We analyze

the protein-protein interaction networks of five organisms—S. cerevisiae, H. sapiens,

D. melanogaster, A. thaliana, and E. coli—and confirm significant and consistent

functional and structural differences between hub proteins that are co-expressed with

their interacting partners and those that are not, and support the view that the former

tend to be intramodular within networks whereas the latter tend to be intermodular.

However, we also demonstrate that in each of these organisms, simple topological

measures are significantly correlated with the average co-expression of a hub with

its partners and therefore also reflect protein intra- and inter-modularity. Further,

cross-interactomic analysis demonstrates that these simple topological characteristics

of hub proteins tend to be conserved across organisms. Overall, we give evidence

that purely topological features of static interaction networks reflect aspects of the

dynamics and modularity of interactomes as well as previous measures incorporating

expression data, and are a powerful means for understanding the dynamic roles of

hubs in interactomes.

In the second part of this thesis, we study the role of multifunctional genes (and

the proteins they encode) in the functional organization of the cell. Many genes can

play a role in multiple biological processes or molecular functions. Identifying multi-

functional genes at a genome-wide level and studying their properties can shed light
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on the complexity of the molecular events that underpin cellular function, leading

to a better understanding of the functional landscape of the cell. However, to date,

genome-wide analysis of multifunctional genes has been limited. Here we introduce

a computational approach that uses known functional annotations to extract genes

playing a role in at least two distinct biological processes, and compare them with

the remaining annotated genes. We leverage functional genomics data sets for three

organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as com-

pared to other genes, genes involved in multiple biological processes possess distinct

physicochemical properties, are more broadly expressed, tend to be intermodular in

protein interaction networks, tend to be more evolutionarily conserved and are more

likely to be essential. We also find that multifunctional genes are significantly more

likely to be involved in human disorders. These same features also hold for genes with

multiple molecular functions. Our analysis is a step towards a better genome-wide

understanding of gene multifunctionality.

Overall, the results presented in this thesis lead to a better understanding of the

complex functional roles that proteins play within the cell.
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Chapter 1

Introduction

A living cell is a very complex system, where the main players are large molecules such

as DNA, RNA, and proteins. Numerous interactions of various types amongst these

molecules and others underlie virtually all biochemical processes within a cell. There-

fore, understanding the network composed of all of these interactions is necessary for

understanding how the cell functions. The association of many of these molecules

with multiple biochemical processes and biological functions further increases the

complexity of the system. With the recent widespread availability of diverse func-

tional genomics data sets for multiple organisms, it has become possible to perform

systematic integrated analysis in order to better understand the functional landscape

of the cell.

1.1 Proteome

Proteins are the main building blocks and functional units of the cell. The primary

structure of proteins is composed of a linear sequence of small molecules called amino

acids. There are twenty commonly occurring amino acids in proteins, and a protein

sequence ranges in length from tens to thousands of amino acids. Combinatorially,

an enormous number of amino acid sequences is possible, and typically thousands of

1



them are actually encoded and subsequently expressed in living cells. A proteome

is the collection of all proteins encoded within a cell. The information about the

proteome is stored, or encoded, in DNA, another type of macromolecule. A similar

molecule, RNA, is an intermediate in the process of protein expression. Sub-regions of

DNA sequence encoding proteins are called genes, and the genome is the entire DNA

making up the cell. According to the central dogma of molecular biology, proteins are

expressed in two stages: first, messenger RNAs (mRNAs) are produced from genes

in a process called transcription, and then proteins are produced from mRNAs in a

process called translation. Different sets of proteins are expressed in different cells

and conditions, and this expression is regulated by proteins known as transcription

factors.

The three-dimensional folding of protein sequences results in an immense versa-

tility of structures, allowing proteins to have a variety of different functions. Proteins

can be enzymes catalyzing many kinds of chemical reactions in the cell. Proteins can

provide structural support or have a mechanical function in the cell. Proteins are

important for cell signaling and for recognizing targets by the immune system. Many

proteins are involved in more than one function and can perform their functions by

interacting with each other transiently or by forming stable complexes. A protein’s

abundance and interactions, and consequently its function may change over time and

depends upon cell type or cell developmental stage, as well as upon other conditions.

This variation contributes to the complexity of proteome functioning.

For a better understanding of the functional organization of the cell as a system,

one needs to study what proteins do, how they do it, and how protein functional-

ity changes over time as a response to changing conditions. In order to gain this

understanding on a proteome-wide scale, a number of high-throughput experimental

techniques have been developed. For example, microarrays or RNA-seq can be used

to obtain a profile of steady state mRNA abundances for all genes within the cell, as
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a proxy to protein expression levels [2, 3]. Yeast two-hybrid and affinity purification

followed by mass spectrometry are two major methods used to detect large numbers

of physical protein-protein interactions [4]. Databases have been created for standard-

ized aggregation and convenient use of different types of high-throughput data [5, 6].

Large consortia such as the Gene Ontology [7] develop vocabulary for the functional

annotation of genes and proteins, and collect information for such annotations from

a variety of data sources for a number of organisms.

Many computational methods and techniques have been developed to gain new

knowledge about the biological functioning of the cell using integrative analysis of

large proteome-wide or genome-wide data sets [8]. This thesis consists of two such

new analyses. In the first part of this thesis, we study how simple topological prop-

erties of proteins within interaction networks reflect aspects of the dynamics and

functional organization of the proteome. In the second part of this thesis, we perform

a systematic analysis of the phenomenon of multifunctionality of genes and proteins.

We next briefly give some background on each of these themes.

1.2 The topology and dynamics of protein inter-

action networks

For several model organisms and for human, there have been significant efforts in the

past 15 years to build large-scale interaction datasets of various types, also sometimes

called interactomes. A graph is a convenient and productive abstraction to represent

such interaction data. For example, physical interactions between proteins (i.e., cor-

responding to binding events) are usually represented by an undirected graph where

proteins are vertices, and edges represent physical interactions between proteins. In

transcriptional regulatory networks, interactions are between genes encoding tran-

scription factors and the genes that they regulate; these networks are represented by
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directed graphs. Often for simplicity, especially when talking about interactions of

different types at the same time, it is convenient to refer to genes and the proteins

they encode interchangeably.

The main focus of our work is on protein-protein physical interactions. The de-

velopment of experimental methods to detect thousands of protein interactions in

one experiment, as well as the creation of public databases to curate these data,

have accelerated research on protein interactomes [4, 9, 5]. Computational analyses

have revealed a number of fundamental properties of physical protein interaction net-

works [10, 11]. It has been shown that a small number of proteins, often called hubs,

have a tendency to interact with very many other proteins, more than expected by

chance if interactions are distributed uniformly at random among proteins (and there

has been substantial debate among researchers about models to explain these observa-

tions [12, 13, 14]). Hubs have been shown to have specific interesting properties, such

as a higher rate of essentiality, more evolutionary conservation, and a higher chance

of association with disease [15, 16, 17, 18]. Protein networks have been shown to have

a modular structure; i.e., these networks consist of groups of tightly interconnected

nodes corresponding to protein complexes and functional modules [19, 20, 21, 22].

A number of methods have been developed to integrate protein interaction data with

other data sources to reveal aspects of the dynamics of protein interactomes [23]. By

integrating protein interaction data with microarray expression data across a number

of conditions, the concept of dynamic modularity was proposed [24]. In particular,

it was argued that hubs can be categorized in one of the two groups: high-level

global connectors of the interactome or low-level hubs functioning inside modules. In

Chapter 2, we significantly expand our understanding of the roles proteins play in

organizing the dynamics and modularity of the cell. In particular, we show that sim-

ple topological features of proteins within interaction networks reflect aspects of the
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dynamics and modularity of interactomes as well as previous measures incorporating

gene expression data.

1.3 Gene multifunctionality

The central dogma of molecular biology states that a gene produces a protein, and

then the protein is responsible for some cellular function. For a long, time the idea

of “one protein—one function” was the dominant viewpoint. However, it is getting

more and more clear that life is not as simple, and that there are genes and proteins

that are responsible for more than one function.

One of the first discovered examples of multifunctional genes were crystallins,

structural proteins of the eye lens found to be also present in other tissues where they

have an enzymatic role [25]. Since then, numerous other examples have emerged,

including ribosomal proteins that function in DNA repair or as developmental regu-

lators, thrombins that are also ligands for cell surface receptors, and many others [26].

The phenomenon of gene multifunctionality is sometimes called protein moonlight-

ning or gene sharing [27, 26]. Gene pleiotropy is a related but different concept, where

a single gene is associated with multiple phenotypes [28].

The multifunctionality of a protein can be explained by different mechanisms

related to its dynamics and structural plasticity. A protein may be expressed in

different parts of the cell, or inside or outside of the cell, or in different types of cells

in a multicellular organism. Binding of a cofactor, as well as oligomerization, can

also affect functionality. Some proteins may have several different binding sites or

intrinsically unstructured regions corresponding to different functions [26, 29, 30].

There is increasing evidence that the phenomenon of multifunctionality is actually

very common. We thus set out to analyze multifunctional genes at a systems level

using computational approaches. However, there is a lack of detailed large-scale
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experimental data about multifunctionality. Instead, using the Gene Ontology as our

primary source of information about gene function, we develop an approach to study

gene multifunctionality at a genome-wide scale. In Chapter 3, we propose a systematic

method for detecting multifunctional genes and then analyze gene multifunctionality

with respect to a number of available genome-wide data sets.

1.4 Our contributions

In this thesis, we perform computational analysis to advance our understanding of

the roles proteins play in the functional organization of the cell.

In Chapter 2, we study how simple properties of hubs are predictive of the roles

they play in the functional organization of cellular networks. We leverage protein-

protein interaction data and microarray expression data, along with other func-

tional genomic data, for five organisms—S. cerevisiae, H. sapiens, D. melanogaster,

A. thaliana, and E. coli. We show that certain simple features of hubs in the network

reveal important aspects of the dynamics and modularity of the interactome. One

of these features is the average co-expression of a protein with its interacting part-

ners [24]. However, surprisingly, the other features depend purely on the topology of

the network. We find that these simple properties reflect intra- and inter-modularity

of proteins in the network. We also perform a cross-interactomic analysis and ob-

serve that inter- and intra-modularity, as measured by these simple hub features, is

conserved across organisms.

In Chapter 3, we study the role of multifunctional genes and the proteins that

they encode in the functional organization of the cell. We use functional annotation

information from Gene Ontology for three organisms, S. cerevisiae, H. sapiens, and

D. melanogaster. We propose a robust method to detect genes that have two or

more very distinct functions, and distinguish them from genes more likely to have
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a single function. Using a number of genome-wide data sources, including protein-

protein physical interaction data, we perform an analysis of multifunctional genes

with respect to various biological properties, and show that they are significantly

different from other non-multifunctional genes. We show that, as compared to other

genes, multifunctional genes possess distinct physicochemical properties, are more

broadly expressed, are intermodular in protein interaction networks, tend to be more

evolutionarily conserved and are more likely to be essential. We also find that mul-

tifunctional genes are significantly more likely to be involved in human disorders.

These same features also hold for genes with multiple molecular functions.
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Chapter 2

Simple topological features reflect

dynamics and modularity in

protein interaction networks

2.1 Introduction

A better understanding of protein interaction networks would be a great aid in further-

ing our knowledge of the molecular biology of the cell. Towards this end, large-scale

protein-protein interaction (PPI) networks have been determined for a diverse set

of model organisms and for human [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42].

Computational analyses of these networks have revealed many important aspects of

cellular organization and functioning [10, 11], including a strong link between the

topological characteristics of cellular networks and their underlying functioning. One

fundamental finding is that PPI networks are modular: they tend to consist of groups

of tightly interacting proteins corresponding to functional modules or protein com-

plexes [19, 43, 44, 45, 46, 47]. Further, from early on, it has been apparent that hubs—

proteins participating in many interactions—have special roles in PPI networks: they
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tend to be more essential, more evolutionarily conserved, and in human are enriched

in genes over-expressed or mutated in cancers [12, 17, 48, 16, 15, 49, 50, 18]. It is

naturally interesting to combine these two well-studied views of PPI networks and to

ask how hubs are positioned with respect to the modular organization of the cell.

Specific contextual information about interactions would be of great help in un-

derstanding the connection between hubs and modularity. For most interactions of a

protein in a network, however, we typically do not know whether these interactions

occur at the same time or under different conditions. In order to understand the dy-

namic roles of hubs and their relationship to network modularity, a highly influential

study integrated PPI data with gene expression data measured in numerous condi-

tions, and classified hubs based on their average co-expression with their interacting

partners [24]. Hubs that have high average co-expression with their partners were

classified as “party,” as they are likely to interact with these other proteins at the

same time. Conversely, hubs that have low average co-expression with their partners

were classified as “date,” as they are likely to interact with their partners at different

moments of time. In an analysis of the S. cerevisiae interactome, date and party

hubs were shown to exhibit different biological properties that imply different roles

in the PPI network. In particular, date hubs were found to have more diversity in

their subcellular localizations, a more drastic effect on network connectivity when

removed from the network, higher centralities in a network of genetic interactions,

and higher evolutionary rates [24, 51, 52]. Further, it was argued that date hubs are

global connectors of different modules whereas party hubs are more local and play

specific roles in modules.

Though the classification of hubs into party and date has been generally ac-

cepted [51, 16, 53, 36, 54, 4], it has also generated significant controversy [55, 56, 57].

It has been proposed that the observed date/party hub distinction may be an arte-

fact of biases in the datasets used or of the analysis methodology. Whereas the initial
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work [24] observed a bimodality in the distribution of average co-expression across

hubs and used this to partition hubs into party or date, this bimodality has not been

observed in subsequent studies [52, 55, 56, 57]. Further, it has been suggested that

the difference in the effect on network connectivity of removing either all the date or

party hubs is attributable to a difference in the total number of interactions of date

and party hubs, that date and party hubs evolve at the same rate, and that there is no

evidence of different centrality in the genetic network for date and party hubs [55, 56].

Finally, it has been argued that the observed differences in the topological properties

between date and party hubs in the network may be attributable only to a small

number of date hubs with extreme properties, while the remaining hubs are much

more homogeneous [57].

The current availability of large-scale interaction networks for numerous organisms

across the evolutionary spectrum provides us with an opportunity to systematically

analyze whether properties of hubs are predictive of the roles they play in the func-

tional organization of cellular networks. We use interaction networks for five organ-

isms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, along with

multiple mRNA expression datasets. In each of these organisms, we show that the

average co-expression of a hub with its partners, independent of any categorization of

hubs, reveals important properties of hubs: the average co-expression of a hub with

its interacting partners is significantly positively correlated with its local clustering

coefficient as well as its average biological process similarity with its interacting part-

ners, and is significantly negatively correlated with its betweenness centrality and its

participation coefficient (a topological measure that reflects the diversity of the inter-

modular interactions of a protein). Further, the average co-expression of a hub with

its interacting partners is negatively correlated with its interaction degree in genetic

networks, and positively correlated with protein essentiality. Importantly, the correla-

tions uncovered between average co-expression and topological features—independent
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of any classification of hubs—imply that the topological features of hubs by them-

selves reflect important aspects of the dynamics and modularity of the interactome.

For example, hubs with low betweenness or high clustering coefficient will tend to

have high average co-expression with their partners and fewer genetic interactions,

whereas proteins with high betweenness or low clustering coefficient tend to exhibit

the opposite trends. Further, as part of our study, we revisit the date-party contro-

versy. We consider a very simple criterion to classify hubs as either party or date,

and confirm significant and consistent functional and topological differences in the

properties of date and party hubs across organisms. Finally, in a cross-interactomic

analysis, we demonstrate that these simple topological and co-expression properties

of hub proteins tend to be conserved across organisms, giving further evidence that

these features reflect important aspects of cellular functioning.

2.2 Results

2.2.1 Preliminaries

We begin by briefly describing our data and analysis framework (see Section 2.4 for

details). We analyze PPI networks for H. sapiens, S. cerevisiae, D. melanogaster,

A. thaliana, and E. coli (denoted by Human-all, Yeast-all, Fly, Athal, and Ecoli,

respectively). For human and yeast, we additionally consider networks consisting

of high-confidence interactions only (denoted by Human-hq and Yeast-hq). We

gather mRNA expression data for these organisms from GEO [58], and compute a co-

expression score for each interaction using the Pearson correlation coefficient (PCC).

We define hubs as all genes in the top 10% in each interactome by the number

of interactions. For each hub, we calculate the average of the co-expression scores

(avPCC) computed over all the interactions in which this hub participates. The size

of each network, the number of interactions with expression data, and the number
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Network
Num.
genes

Num.
interac-
tions

Num. in-
teractions
with co-
expression
score

Hub
thresh-
old

Num. hubs
(%)

Num.
hubs
with
avPCC

Human-hq 4,750 13,102 11,781 12 481 (10.1%) 466
Yeast-hq 4,467 22,243 21,869 23 449 (10.1%) 445

Fly 8,218 36,569 36,525 23 865 (10.5%) 865
Athal 5,454 12,883 10,611 10 555 (10.2%) 506
Ecoli 3,115 17,788 17,697 23 319 (10.2%) 319

Human-all 10,229 80,651 66,102 39 1,033 (10.1%) 931
Yeast-all 5,641 59,930 59,658 49 570 (10.1%) 570

Table 2.1: Network sizes and the number of network hubs.
The number of vertices (genes) and edges (interactions) in each network, the number
of interactions that were assigned a co-expression score, the degree threshold to be
chosen as a hub, the number of hubs obtained using this threshold, and the number
of hubs that were assigned an average co-expression score.

of hubs are listed in Table 2.1. In the main text, we focus on the human high

confidence interaction network Human-hq unless otherwise specified, but results for

all networks are given in Appendix A.

We use four measures to ascertain the functional, organizational and dynamic

properties of proteins in the network: clustering coefficient, betweenness centrality,

participation coefficient and functional similarity. Clustering coefficient is the density

of the neighborhood of a protein in the network, and proteins with higher clustering

coefficient have interactions with proteins that interact with each other. Betweenness

centrality is a measure of the fraction of shortest paths passing through a node in

the network, and nodes with higher betweenness are more globally central in the net-

work. Participation coefficient shows how well interactions of a protein are distributed

amongst clusters in the network, so that proteins with low participation are mostly

interacting with proteins from the same cluster, whereas proteins with high partic-

ipation have their interactions spread among many clusters. Functional similarity

estimates to what extent a protein participates in the same biological process as its
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neighbors in the network. We note that three of these measures are purely topolog-

ical and do not use any information other than interaction data, whereas functional

similarity also uses Gene Ontology [7] annotations.

We classify hubs in the low range of avPCC as date and hubs in the high range of

avPCC as party. Despite the previously observed differences between date and party

hubs [24, 51, 16, 53, 36, 54, 4], the choice of a threshold in the avPCC range between

the two classes of hubs has remained a topic of disagreement. As we have many

networks to consider, we choose a simple threshold criterion and later demonstrate

that this choice does not matter (see Section 2.2.3). In particular, we define party

hubs as the one third of hubs with the largest avPCC, and call the remaining two

thirds of hubs date. Since it has been argued that the originally observed differences

between date and party hubs may be attributed only to a small number of date hubs

with extreme network global centrality properties [57], we classify hubs with many

interactions or with high betweenness centrality into a special group called extremal

hubs (18 to 89 hubs depending on the network) and exclude them from the analysis

of date and party hubs.

2.2.2 Properties of date and party hubs are significantly dis-

tinct

We first analyze the differences between party and date hubs on our seven networks

(Fig. 2.1 and Fig. A.1, Fig. A.2, Fig. A.3, Fig. A.4, Fig. A.5 and Fig. A.6). We con-

firm that date hubs tend to be more globally central in the network and to have more

diverse intermodular participation, as reflected by their significantly higher between-

ness centrality and participation coefficient (p < 1e−23 and p < 9e−27 respectively,

in the high confidence human network, Mann–Whitney U; Fig. 2.1B). Further, party

hubs tend to have denser neighborhoods consisting of genes with more similar func-

tions, as reflected by their significantly higher clustering coefficient and functional
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similarity (p < 4e−30 and p < 4e−28, respectively, in the high confidence human

network, Mann–Whitney U; Fig. 2.1B).

In addition to comparing the node-level features of date and party hubs, we also

compare the positioning of the set of date and party hubs in the network with respect

to each other in order to better understand global network organizational features.

For either the set of date hubs or the set of party hubs, we measure how well connected

they are to each other by calculating the density of the subnetwork induced by them,

defined as the number of interactions amongst the set of proteins, normalized by the

maximum possible number of such interactions. We also measure how well spread

the interactions of these hubs are in the whole network by calculating the expansion

of the set, defined as the number of proteins in the network that are connected with

any hub in the set, but do not belong to the set, normalized by the size of the set.

We observe that party hubs have a strong tendency to interact with other party

hubs, and much less so with other proteins, as reflected by their high density and

low expansion in the network as compared with sets of the same size consisting of

randomly selected hubs (Fig. 2.1C). On the contrary, date hubs have significantly

lower density and significantly higher expansion than random sets with the same

number of hubs, suggesting that they are more sparsely distributed in the network

than party hubs.

As a final test to compare the topological features of date and party hubs, we

compare the effect of node removal on network structure for date and party hubs.

For a set of hubs (either date or party), we remove all of them from the network at

once and measure the change in three representative global network characteristics:

average path length, size of the largest connected component, and global clustering

coefficient. We compare the effect of such a removal with the effect of a removal

of random sets of the same number of hubs. We observe that date hubs are more

central in the network, as their removal affects connectivity of the network much more
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Figure 2.1: Date and party hubs have distinct functional and topological properties.
Date and party hub classification analysis in the human high quality interaction net-
work (Human-hq). (A) Number of hubs in each class. Party hubs in this network
have avPCC ≥ 0.29; this threshold corresponds to the top third of avPCC values for
all hubs categorized as either party or date. (B) Betweenness, clustering coefficient,
participation coefficient and functional similarity for date and party hubs are signifi-
cantly different; p-values are computed using the Mann–Whitney U. (C) Density and
expansion of date and party hubs are significantly different. The gray curves in each
panel show the distributions for 1000 independent random samples of the same num-
ber of hubs, and are used to compute empirical p-values. (D) Effect of hub removal is
significantly different for party and date when considering the average path distance,
the size of the largest connected component, and the global clustering coefficient. The
gray curves show the distributions for 1000 independent random samples of the same
number of hubs, and are used to compute empirical p-values. See Section 2.4 for more
details.
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significantly than removal of random hubs, as reflected by the average path length

of the network and the size of the largest connected component (Fig. 2.1D). At the

same time, removal of party hubs makes the network much less clustered than the

removal of random hubs, as reflected by the effect on the global clustering coefficient.

The results of these analyses have qualitatively the same trends across the five

organisms (Fig. A.1, Fig. A.2, Fig. A.3, Fig. A.4, Fig. A.5 and Fig. A.6), if extremal

hubs are included in the analysis (Fig. A.7), or if all proteins with at least three

interactions in the network are considered hubs (see Section A.1.2 and Fig. A.8,

Fig. A.9 and Fig. A.10). Taken together, our analysis over seven networks suggests

significant and consistent differences between proteins characterized based on avPCC

with respect to topological, intermodular and functional features.

2.2.3 Hub characteristics capture functional and organiza-

tional properties of the interactome

We next show that the avPCC measure is an interesting biological measure indepen-

dent of any threshold one could use to define date and party hubs. That is, while

there has been significant previous controversy concerning how an avPCC threshold

should be chosen to categorize hubs into date and party [55, 56], we show here that the

avPCC measure is itself correlated with other characteristics of hubs in the network.

In particular, we compute the Spearman rank correlation (SRCC) between avPCC

and our topological and functional measures (Fig. 2.2, top row, and Table A.1).

Across the organisms, we find consistent positive correlations of avPCC with cluster-

ing (SRCCs ranging from 0.30 to 0.72 depending upon the network) and functional

similarity (SRCCs from 0.25 to 0.59) and negative correlations with betweenness (SR-

CCs from −0.20 to −0.55, except Ecoli) and participation (SRCCs from −0.26 to

−0.69). These correlations are consistent with the original claims [24] that hubs in

the high avPCC range are more local and play more central roles within modules and
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complexes, and thus have higher clustering coefficients and higher average functional

similarities with their interacting partners, whereas hubs in the low avPCC range play

more global roles in organizing other proteins’ functioning and thus are more globally

central in the PPI network (as evidenced by higher betweenness centrality) and have

more diverse participation in interactions with different processes and modules (as

evidenced by higher participation coefficient).

Given the significant and consistent correlations between avPCC and clustering,

betweenness, participation and functional similarity, we also compute the SRCCs

amongst these measures. As expected from our above analysis, these measures are also

correlated with each other in a consistent manner across the seven networks (Fig. 2.2

and Tables A.2, A.3 and A.4). Comparing the three purely topological measures

with each other, we find that betweenness is positively correlated with participation,

while both are negatively correlated with clustering. We further note that because

the functional similarity measure aggregates information from Gene Ontology, we can

also use it as an independent means of assessing whether the topological measures

based purely on interaction data reflect properties of protein functioning. We find

that functional similarity is significantly positively correlated with clustering (SRCC

from 0.26 to 0.71, except Ecoli), while negatively correlated with betweenness (SRCC

from −0.09 to −0.62, except Ecoli) and participation (SRCC from −0.21 to −0.65,

except Ecoli). This suggests that measures based purely on the topology of the

network can reflect interesting functional properties of proteins.

As a control to confirm that the information coming from protein-protein inter-

actions is crucial, we randomize each network in a degree-preserving manner [59],

and recompute the node-level topological and functional measures using the random-

ized interactions. Correlations between these measures aggregated over 20 random

networks (Fig. 2.2) have substantially lower absolute values than for real interaction

networks and sometimes show a completely opposite trend. We note, however, that
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Figure 2.2: Functional and topological characteristics of hubs are significantly corre-
lated with each other in a consistent manner in protein-protein interaction networks.
Every colored bar represents a Spearman correlation between two characteristics of
hubs in one of the networks. Bars of significant correlations (absolute value > 0.1,
p-value < 0.05) have black edges. See Tables A.1, A.2, A.3 and A.4 for exact values.
Smaller uncolored bars show average correlations in 20 degree-preserving random
networks (with error bars depicting standard deviations).
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these measures can still have significant and meaningful correlations in random net-

works. For example, a remarkably high correlation is found between avPCC and

functional similarity in random networks, though it is still noticeably lower than in

real networks. This is an indication of the strong signal in expression data itself that

does not arise from physical interactions. Indeed, it is not surprising that even for

arbitrary pairs of genes, not necessarily physically interacting, the more often they

are expressed together, the more likely that they are functionally related.

Potentially confounding factors in our correlation analysis include the protein

degree threshold used to identify hubs in the networks, correlations of hub features

with degree, bias from extremal hubs, and study bias. To demonstrate that none of

these significantly affect our results, we also perform this analysis when using different

degree thresholds, when computing partial correlations with correction for degree,

when excluding extremal hubs, and when focusing on high-throughput networks in

yeast and human (see Sections A.1.2 and A.1.3, and Fig. A.11, Fig. A.12, Fig. A.13,

Fig. A.14 and Fig. A.15).

2.2.4 Distinct functions are enriched in hub classes

To determine whether party and date hubs (as well as hubs partitioned into groups

based on topological measures) tend to participate in different biological functions,

we performed GO enrichment analysis on each set of hubs in Human-hq using the

most general terms in each of the three ontologies (i.e., the terms that are immedi-

ate children of roots of the ontologies), and used all annotated hubs to provide the

background functional distribution. We found that terms enriched for date and party

hubs are very different: date hubs are associated with global tasks such as “biological

regulation” and “signaling,” while party hubs are enriched in local and module- and

complex-specific terms such as “macromolecular complex” and “metabolic process”

(Fig. 2.3).
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Interestingly, very similar terms are enriched when, instead of a date-party clas-

sification based on avPCC, hubs are classified in a 2-to-1 proportion using clustering

coefficient, betweenness centrality, participation coefficient or functional similarity

(Fig. 2.3). That is, the same functional terms have similar enrichments when hubs

are classified based purely on topological measures, suggesting that these topological

properties can reflect the functional roles of hubs in the interactome as well as avPCC

does. In general, we obtain similar results for the other networks (see Section A.1.4

and Fig. A.16, Fig. A.17, Fig. A.18, Fig. A.19, Fig. A.20 and Fig. A.21).

2.2.5 Hubs that are more globally central in physical inter-

action networks have more genetic interactions

We next consider the relationship between various properties of hubs in physical in-

teraction networks and their number of genetic interactions. In the initial publication

on date and party hubs [24], it was observed that date hubs are involved in more ge-

netic interactions than party hubs, and it was proposed that their phenotypic link

to many proteins was due to their connecting different biological processes to each

other [24]. As yeast remains the only organism with a sufficiently large number of

known genetic interactions, our analysis on genetic interactions is limited to this or-

ganism. We note, however, that the current dataset aggregated in BioGRID [60] is

two orders of magnitude larger than the one used previously by Han et al. [24].

We compute SRCCs between the number of genetic interactions a hub has and

its avPCC, its clustering coefficient, its betweenness centrality, its participation coef-

ficient and its functional similarity in the physical interaction network. For both the

Yeast-all and Yeast-hq networks, avPCC is significantly negatively correlated with

genetic interaction degree (Fig. 2.4). Further, we find that the number of genetic

interactions of a hub is positively correlated with betweenness and participation in

both networks, while negatively correlated with clustering and functional similarity.
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Figure 2.3: Different hub characteristics produce classifications of hubs with similar
functional properties.
Hubs are divided in a 2-to-1 proportion using either avPCC, clustering coefficient,
betweenness centrality, participation coefficient or functional similarity scores in
Human-hq. Broad GO terms that are enriched at Bonferroni-corrected significance
threshold 0.05 are shown with colors indicating the ontology of the term and color
intensity indicating the p-value of enrichment. Classifications of hubs based on differ-
ent hub characteristics produce classes of hubs with similar functional annotations.
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Figure 2.4: Characteristics of hubs in protein physical interaction networks are sig-
nificantly correlated with their number of genetic interactions.
Every bar represents a Spearman correlation between a hub characteristic in one of
the protein physical interaction networks for yeast and degree in the yeast genetic
interaction network. Bars of significant correlations (absolute value > 0.1, p-value
< 0.05) have black edges.

We also confirm that these correlations are significant even when compared with those

in random networks (see Section A.1.8 and Fig. A.34). Finally, to directly compare

with the original study [24], we also verify that date hubs are involved in many more

genetic interactions than party hubs (Fig. A.22AB).

These observations are also largely confirmed when negative and positive genetic

interactions are considered separately (Fig. A.23), as well as when computing partial

correlations corrected for essentiality (see Section A.1.5, Fig. A.22CD and Fig. A.24).

As is the case when considering all genetic interactions together, the trends are

stronger in Yeast-all than in Yeast-hq.

Overall, we find that not only avPCC, but also other hub characteristics, including

those that are purely topological, are significantly correlated with centrality in the

genetic interaction network. These results support the original observations that hubs

with the role of global connectors and organizers of the interactome, as identified by

avPCC or (as we show here) by other topological measures, are related in their effect

on phenotype with many more genes than are local hubs from modules and complexes.
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2.2.6 Role of yeast two-hybrid and co-complex interactions

Physical protein-protein interactions obtained using different methods can differ in

their characteristics [36, 61]. In particular, the two high-throughput methods that

account for the largest number of interactions in our networks, yeast two-hybrid

(Y2H) and affinity purification followed by mass spectrometry, tend to detect different

types of interactions. The former are more likely to detect direct, transient binary

interactions between proteins whereas the latter tend to detect more stable co-complex

interactions that may or may not correspond to direct interactions.

It was previously observed that for a fixed avPCC threshold in the definition of

date and party hubs, date hubs are much more prevalent in Y2H networks, while party

hubs are more prevalent in co-complex networks [36]. Therefore it was suspected that

the observed distinction between date and party hubs may be attributable to the fact

that interaction networks are typically compiled of interactions of both types, and

this may artificially imply the date/party distinction [57]. In order to rule out these

concerns regarding our observations about topological features of hub proteins, we

apply the same analysis to networks of only Y2H or of only co-complex interactions.

We find that correlations between different hub characteristics for networks formed

by either only yeast two-hybrid or only co-complex interactions are qualitatively the

same as in networks with interactions of all types combined (Fig. A.25, as compared

with Fig. 2.2). The date/party distinction for hubs in these networks separately is

also qualitatively the same as in networks with interactions of both types combined

(Fig. A.26, Fig. A.27, Fig. A.28, Fig. A.29, Fig. A.30 and Fig. A.31, compare with

Fig. 2.1 and Fig. A.1, Fig. A.2, Fig. A.3, Fig. A.4, Fig. A.5 and Fig. A.6). Thus, simple

hub characteristics consistently reflect principles of network structure and functioning

even when applied to networks comprised of either Y2H or co-complex interactions.

Despite the consistency in correlations amongst hub features between Y2H or

co-complex networks with the network compiled of interactions of both types, when
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analyzing just the latter combined network, topological properties of hubs are consis-

tently and oppositely correlated with the number of Y2H interactions as opposed to

the number of co-complex interactions. The avPCC measure is negatively correlated

with the number of Y2H interactions, while positively correlated with the number of

co-complex interactions (Fig. 2.5). Accordingly, date hubs participate in more Y2H

interactions, while party hubs participate in more co-complex interactions (p-value

from 5e−08 to 3e−24, Mann–Whitney U; Fig. A.32). Betweenness and participa-

tion are positively correlated with the number of Y2H interactions, while negatively

correlated with the number of co-complex interactions, which suggests that these

two measurements are indeed capturing the centrality of hubs and their tendency to

interact one-to-one with other proteins. Clustering and functional similarity are neg-

atively correlated with the number of Y2H interactions, while positively correlated

with the number of co-complex interactions, which suggests that these two measure-

ments are capturing the tendency of hubs to participate in complexes and functionally

homogeneous modules. Thus, we find that more globally central hubs (as specified

by either betweenness or participation) tend to have more yeast two-hybrid interac-

tions whereas more module-specific hubs (as specified by either avPCC, clustering

coefficient or functional similarity) tend to have more co-complex interactions.

2.2.7 Hubs involved in modules and clusters are more likely

to be essential

In the initial study [24], it was observed that in yeast, party hubs are more likely to

be essential than date hubs (though the observed difference was not significant). We

revisit this question with our newer and larger data set.

We compute the SRCC between essentiality represented as an indicator vector

(i.e., 1 if a gene is essential and 0 otherwise) and other characteristics of hubs in

the physical interaction network. For both the Yeast-all and Yeast-hq networks,
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Figure 2.5: Hubs with different roles in interactomes are involved in interactions of
different types.
For hubs and their characteristics determined from the full networks Human-all,
Yeast-all and Athal, we measured the Spearman correlation between hub charac-
teristics and the number of interactions of the type yeast two-hybrid or co-complex.
Bars of significant correlations (absolute value> 0.1, p-value< 0.05) have black edges.
Hubs with higher avPCC, clustering coefficient and functional similarity tend to have
more co-complex interactions, while hubs with higher betweenness and participation
coefficient tend to have more yeast two-hybrid interactions.

avPCC is significantly positively correlated with essentiality (Fig. 2.6). To directly

compare with the original study [24], we also compare date and party hubs and find

a significantly larger fraction of essential genes in the set of party hubs than in the

set of date hubs, as determined by the hypergeometric test (Fig. A.33). We further

show that the correlation of avPCC and essentiality is significantly high even when

compared with that found in random networks (see Section A.1.8 and Fig. A.35). We

also find that essentiality is positively correlated with clustering and functional sim-

ilarity, while negatively correlated with betweenness and participation (though this

correlation is not significant for betweenness in Yeast-all). This is in agreement with

recent evidence of the tight relationship of a protein’s essentiality with modularity
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Figure 2.6: Hub characteristics in yeast protein physical interaction networks are
correlated with protein essentiality.
Each bar represents a Spearman correlation between a hub characteristic and hub
essentiality in one of the yeast networks. Bars of significant correlations (absolute
value > 0.1, p-value < 0.05) have black edges.

and its involvement in essential complexes [17, 48], as hubs with high avPCC, cluster-

ing, or functional similarity, and correspondingly low betweenness and participation,

are likely to play key roles in modules and complexes.

2.2.8 Hub roles in the interactome are evolutionary con-

served

In order to compare hub characteristics for similar genes from different organisms,

we obtain sets of orthologous proteins from P-POD [62] for all organisms under con-

sideration. As genes from the E. coli network have only a few orthologs in P-POD

in the other networks, we focus this analysis on the four eukaryotic species. For

each pair of networks of different organisms, we calculate the SRCCs of hub char-

acteristics (avPCC, clustering, betweenness, participation and functional similarity,

computed as described above independently for each network) over all pairs of orthol-

ogous hubs. For Human-all and Yeast-all we observe highly significant positive

correlations which range from 0.38 for functional similarity to 0.76 for participation
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Hub characteristic ρ p-value
Empirical
p-value

avPCC 0.55 3e−36 < 0.001
clustering 0.72 3e−70 < 0.001
betweenness 0.44 1e−22 < 0.001
participation 0.76 1e−82 < 0.001
func. sim 0.38 4e−16 < 0.001

Table 2.2: Spearman correlation for characteristics of orthologous hubs in Yeast-all
and Human-all.
Five hub characteristics for all 437 orthologous pairs between 291 hubs in Yeast-
all and 299 hubs in Human-all are significantly positively correlated, as measured
by Spearman’s rho (ρ) and the correspondingly determined p-values and empirical
p-values for 1000 random permutations of hubs. See main text and Section 2.4 for
details.

(Table 2.2), and for Human-hq and Yeast-hq they range from 0.23 for avPCC to

0.62 for clustering (Table A.5). We note that some proteins may be involved in many

orthologous pairs and therefore we also validate the significance of the observed cor-

relations by randomly permuting hubs, and find that these results remain significant

(see Section 2.4 for more details). These features are largely consistently positively

correlated when comparing ortholog pairs between different pairs of networks (Ta-

bles A.6, A.7, A.8, A.9, A.10), though at varying levels of statistical significance.

Further, we observe that purely topological features such as clustering coefficient and

betweenness centrality are much more consistently conserved between pairs of net-

works than avPCC (Tables 2.2, A.5, A.6, A.7 and A.8), which is additional evidence

that these topological features can reflect hub roles in the interactome.

One may suspect that the observed high correlation of hub features between organ-

isms may be explained by conservation of modules that correspond to higher values

of avPCC, clustering and functional similarity and to lower values of betweenness and

participation. To exclude this possibility, for a pair of organisms, we first determine

in each the hubs with the highest and lowest third of scores, according to any given

hub measure. Next, we determine how many ortholog pairs are found between each of
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Figure 2.7: Characteristics of hubs are conserved across networks.
The top (respectively, bottom) third of hubs in each of Yeast-all and Human-all, as
determined by (A) avPCC and (B) participation coefficient, are enriched in the num-
ber of orthologs between them. The number of orthologs between each of the groups
is given, along with a z-score and p-value derived empirically from random samples
of proteins for each group. Red bars indicate orthologous relationships between pro-
teins in the top third of hubs, blue bars indicate orthologous relationships between
proteins in bottom third of hubs, and gray bars indicate orthologous relationships
between proteins that are in opposing groups in the two organisms.

the top and bottom groups in both organisms. We compare these numbers with the

same values expected if these top and bottom sets of hubs were selected at random,

rather than according to the hub score. We expect more ortholog pairs between the

top thirds as well as between bottom thirds, and fewer orthologs between the top and

bottom thirds. Indeed, this is what is observed for our hub measures (see, for exam-

ple, avPCC when comparing the Yeast-all and Human-hq networks in Fig. 2.7A

and participation for these networks in Fig. 2.7B).

2.3 Discussion

We have confirmed in protein interaction networks across a range of organisms that if

hubs are partitioned into two classes according to their tendency to be co-expressed

with their interacting partners, they exhibit significantly different properties and roles

28



in the interactome. In one class, hubs tend to have higher average co-expression

with their interacting partners, higher clustering coefficients and higher functional

similarities, but lower betweenness centralities and participation coefficients. These

hubs are more often interacting with each other, and are enriched with co-complex

interactions. Simulated removal of these hubs from the network does not greatly

affect the connectivity of the network. These properties suggest that such hubs may

act locally inside functional modules and protein complexes. In another class, hubs

tend to have lower average co-expression, clustering, and functional similarity, but

higher betweenness and participation. These hubs more often participate in genetic

interactions, and are more often detected in yeast two-hybrid interactions, which are

presumably enriched in binary transient interactions. These hubs tend to interact

with each other less, and with other proteins more. After these hubs are removed,

the network becomes more disconnected and clustered. These properties suggest that

such hubs tend to be global connectors and coordinators of different modules in the

interactome.

Initially, it was proposed that the distribution of the hubs’ average co-expressions

with their neighbors was bimodal, and it was argued that this naturally implied a

categorization of all hubs into two classes with hypothetically different roles. Further-

more, Han et al. [24] proposed a view of the interactome with mostly non-intersecting

independent modules, and certain proteins outside of these modules that connect and

coordinate their functioning. This model, as well as the existence of the two classes of

hubs with correspondingly different roles, has been the subject of some controversy.

We argue that even though we believe the two classes of proteins in the interactome

can be distinguished from each other and their roles can be recognized as different, it

is not necessarily the case that all proteins or even just all hubs can be classified into

one of the classes. Rather, the network is almost certainly more complex, with highly

overlapping modules, multifunctional proteins, and proteins of mixed and not easily
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detectable roles that depend upon conditions and time. A better understanding of

the structure and functioning of the interactome will require large-scale annotation

of interactions and interacting proteins with information about concentrations and

the strength, condition and timing of when, where and how these interactions occur.

These annotations are currently not available at a large scale, but may be obtained

experimentally in the future, or by developing new methods for analysis of existing

data. With uncertainty about the exact role of each particular protein in the inter-

actome, measuring and analyzing their properties on a continuous scale may be more

appropriate than trying to extract firm classes.

A significant amount of computational research has been devoted to uncovering

the dynamics of protein interactions via integration with other types of data [63,

64, 45, 65, 23]. Currently, the most common approach to glean information about

the dynamics of hubs and their interactions is by integrating interaction data with

gene expression data, as is done here and previously using the measure of a protein’s

average co-expression with its interacting partners. However, we have shown that

very similar information is reflected in the interaction data itself. Even though it is

highly unlikely that just topological network features can describe all of the structure

and dynamics of interactomes, analysis of topological characteristics in networks may

be of great help in furthering our understanding of network dynamics.

As more large-scale protein interaction networks have become available, certain

of their aspects and properties have been shown to be conserved across interactomes

of different organisms [66, 67, 68, 69, 70]. Such conservation is strong evidence that

a network feature reflects an important aspect of interactomes. We have shown that

a protein’s average co-expression over neighbors in its PPI network is conserved for

orthologous hubs across different organisms, and have further confirmed that it is

a biologically meaningful measure for understanding hub roles. At the same time,
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we have shown that hub characteristics that depend purely on network topology are

conserved at least as well as average co-expression.

Following previous work, in our analysis we have focused almost exclusively on

hubs, a small fraction of proteins within interactomes. However, we have also demon-

strated, by reducing the number of interactions required to call a protein a hub, that

our observations hold when we consider many more proteins in the network, so it may

be possible to classify not just hubs based on topological features or co-expression

properties, but also proteins in general. Moreover, we have shown that our analysis

is robust to noise in interaction data, as the trends we report are consistent not only

across networks of lower coverage where interactions are additionally selected for high

quality, but also across larger networks without additional quality filtering that are

likely to contain more noise but also have higher coverage.

We have shown that topological features of proteins in the network capture func-

tional and structural properties of networks. Therefore, the distribution of these

features also, to some extent, characterizes the whole interactome. In the future,

depending upon the application, it may be desirable to take these features into ac-

count when building and analyzing models for protein interaction networks, and in

particular, within algorithms that are used for generating random networks in or-

der to compare them with real data. Existing approaches for randomizing protein

interaction networks have preserved local properties such as degree and local clus-

tering coefficient, small subgraphs and schemas, as well as some evolutionary con-

straints [71, 72, 70, 73, 74, 75]. In addition to these features, in the future, random-

ization algorithms may try to also preserve measures such as betweenness centrality

and participation coefficient, as we have demonstrated that these features capture

additional information about network structure.

In sum, our observations provide a better understanding of the dynamic inter-

actome of the cell. As more specific, high-quality and high-coverage protein-protein
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interaction data become available, we believe our approaches to analyze these data

can reveal further details about the structure, function and evolution of interactomes.

2.4 Materials and methods

2.4.1 Interaction networks

Seven interaction networks for five organisms are considered in our analysis. We

briefly describe the networks below; further details can be found in Section A.2.2.

In all networks, self-loops and duplicate interactions are deleted. The size of each

network is shown in Table 2.1.

S. cerevisiae : The network Yeast-all consists of all yeast protein physical interac-

tions from BioGRID [60] version 3.1.78. The high quality network Yeast-hq consists

of all binary and co-complex interactions from HINT [76]. Yeast genetic interactions

are obtained from BioGRID version 3.1.78 (123707 interactions).

H. sapiens: We use two human protein-protein physical interaction networks, both

compiled by [77]. The first, Human-all, is their comprehensive network aggregated

from numerous sources, and the second is their high quality subnetwork Human-hq.

D. melanogaster : Fly combines all interactions in DroID [78] version 2011 02 with

those from DPiM [38].

A. thaliana : Athal consists of protein-protein interactions obtained from IntAct [9],

BioGRID, and from the supporting material of [39].

E. coli : Ecoli consists of protein-protein physical interactions extracted via the

PSICQUIC View application [79].

2.4.2 Network topology analysis

We briefly describe the topological measures that we utilize in our study.
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The degree of a vertex is the number of interactions the corresponding protein has.

In each network, we consider hubs to be proteins in the top 10% by degree, where the

precise degree threshold to be called a hub is chosen such that at least 10% of vertices

are hubs. These thresholds and the number of hubs for each network are shown in

Table 2.1.

The betweenness centrality of a vertex v in a network is the number of shortest

paths between all pairs of vertices in the network that pass through v, with the

shortest paths between two genes s and t weighed inversely to the total number of

distinct shortest paths between s and t.

The clustering coefficient of a node is defined as the ratio of the number of triangles

containing that node to the number of triples centered on it; i.e., for a protein,

this measures the number of interactions among its interactors, normalized by the

maximum number of possible interactions.

The participation coefficient [80, 57] of a vertex with respect to a set of clusters in

a network is defined as P = 1−
∑

i

(
ki
k

)2
, where the summation is over all clusters, k is

the degree of the vertex, and ki is the number of edges going from the vertex to vertices

in cluster i. Note that P = 0 if all edges from a vertex go to a single cluster, and P

is closer to 1 if edges from the vertex are more uniformly distributed over clusters.

To find clusters in the network, we used the SPICi clustering algorithm [22] with

parameters optimized with a simple exhaustive search procedure to approximately

maximize Newman’s modularity measure [81]. See Section A.2.4 for details.

The density of a set of vertices S is the ratio of the actual number of edges between

vertices in S to the maximum possible such number |S|·(|S|−1)/2. The neighborhood

of a set of vertices S is the set of all vertices that are connected to some vertex from

S but are not themselves members of S. The expansion of a set of vertices S is

the ratio |N |/|S|, where N is the neighborhood of S. When measuring the density

or expansion of a class of hubs, we compare it with the density or expansion of a
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random subset of the same number of background hubs as in the class in question.

We consider 1000 independent samples, and report the empirical p-value of the actual

value as compared to the distribution of random values.

The average path length for a network is measured as the average over all pairs

of vertices of the lengths of the shortest paths between them. (For a disconnected

network, only pairs of vertices connected by a path are considered.) The relative size

of the giant component is calculated as the ratio of the size of the largest connected

component in the network to the number of vertices in the network. The global

clustering coefficient of a network measures the tendency of network vertices to

cluster together. It is defined as thrice the number of triangles divided by the number

of connected triples of vertices in the network.

In a hub removal experiment for a class of hubs, we remove all vertices of the

class with their interactions from the network at once and measure the fold change of

certain characteristics of the remaining network as compared with the initial network

(e.g., if the average path length increased 1.23 times, then the fold change is 1.23).

To compute an empirical p-value of this fold change value, we compare it with the

distribution of the same values obtained after 1000 independent removals of random

subsets of the same number of background hubs. We use the average path length, the

size of the giant component, and the global clustering coefficient as global character-

istics of network structure. By removing all hubs at once and comparing computed

values with removals of random subsets of the same size, our hub removal experiment

does not depend on the order in which hubs are removed or the size of the set of

hubs considered, two issues which were raised previously [55, 56]. The results of these

experiments can be compared for different classes of hubs, as in each case we compare

the effect for a class of hubs relative to random subsets of the same size.

All topological measures are computed based on the python interface to the

igraph library, version 0.5.4 (http://igraph.sourceforge.net/). We utilize degree-
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preserving network randomizations, as implemented in the

igraph.Graph.Degree Sequence() method with the “vl” option [59].

2.4.3 Expression

Expression compendia for each organism consist of datasets collected from online

databases and papers, as described in detail in Section A.2.3, and for each organism

cover a wide range of conditions and/or tissue and cell types (where applicable).

Each dataset is processed independently as follows: all replicates are merged (gene

expression values averaged over replicates of the same experiment); genes with less

than 50% known values are removed; the log2-transformation is applied to all values

if absolute signal values are given; for each matrix column corresponding to a single

genome-wide experiment, the values of the column are transformed to z-scores.

For each organism, for each interacting pair of genes, we compute their co-

expression via the Pearson correlation coefficient (PCC) of their expression profiles

as follows. For genes with incomplete expression profiles within a dataset, only

dimensions where values for both genes in the pair are known are used when com-

puting the PCC of this pair. If the expression compendium for an organism consists

of several datasets, the PCC is computed for each dataset independently, and then

these PCC values are averaged with weights proportional to the number of expression

datapoints that the dataset contributed to the compendium (in case of incomplete

data, this is only over datasets where the PCC could be successfully computed), to

obtain a final co-expression interaction score.

Some proteins in the networks are not included in any expression datasets. These

proteins are not used to compute PCCs and avPCCs (see below), but may still con-

tribute to degree or other topological properties of proteins. The number of inter-

actions in the networks for which co-expression values are computed is shown in

Table 2.1.
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2.4.4 Hub scores and classifications

For each hub, the average co-expression score (avPCC) is computed as the average

of its co-expression interaction scores [24]. More precisely, the avPCC of a hub is

the sum of all defined co-expression scores for interactions of the hub divided by hub

degree (thus unknown edge scores are effectively assumed to be 0). Hubs are scored

with avPCC only if they have at least 3 interactions with defined co-expression score.

Extremal hubs are defined as hubs in the top 5% by either degree or betweenness

centrality amongst all hubs. For most networks, these two subsets of hubs are highly

intersecting, so the union contains much less than 10% of all hubs. These hubs are

excluded from the classification of hubs into date and party, and the corresponding

analysis of this classification, but may still contribute to properties of other genes,

particularly other hubs. Further, the background set of hubs, from which random sets

of hubs are chosen to compute empirical p-values of several properties (as described

above), does not include extremal hubs. Note, however, that extremal hubs are not

excluded when doing correlation analysis of hub characteristics.

Party hubs are defined as the top one third by avPCC amongst all non-extremal

hubs, and the remaining non-extremal hubs are defined as date hubs.

2.4.5 Gene ontology analysis

For our functional analysis, we use Gene Ontology (GO) [7] terms and gene association

data for each organism, not including associations with evidence codes IEA, RCA,

IPI, ND or the qualifier NOT (downloaded from http://www.geneontology.org/ on

July 25, 2011). The functional similarity of a pair of genes is computed as described

in [57]. First, the information content of a term t is defined as s(t) = − log |t||G| , where

|t| is the number of genes annotated with the term, and |G| is the total number of

genes in the organism annotated with at least one term. Then if T (g) and T (h) are the

sets of terms annotating genes g and h respectively, functional similarity is computed
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as f(g, h) =
∑

t∈T (g)∩T (h) s(t)∑
t∈T (g)∪T (h) s(t)

. For functional similarity, all GO Biological process terms

of depth ≥ 2 annotating at least 3 and at most 1000 genes are considered. The

functional similarity of a vertex in a network is the average of functional similarity

of this gene with all its interacting partners; proteins not annotated with one of the

terms under consideration lead to functional similarities of 0.

We perform GO annotation enrichment test using the code of the project goatools

(https://github.com/tanghaibao/goatools). We apply it to groups of hubs in

the top and bottom one third or two thirds by avPCC, clustering, betweenness,

participation and functional similarity in each network. For this analysis, we use broad

functional terms that are direct children of roots of all three ontologies: biological

process, 28 terms; cellular component, 13 terms; and molecular function, 20 terms.

We use the set of all annotated hubs as the background population, and report terms

with a Bonferroni-corrected p-value of less than 0.05. For each network, we test

enrichment for each ontology (e.g., Biological process ontology) independently, and

restrict the analysis only to the hub proteins that have at least some annotation with

terms other than the root (e.g., Biological process) in this ontology.

2.4.6 Essential genes

The 1222 essential genes for S. cerevisiae are obtained from the Saccharomyces

Genome Deletion Project webpage (file

http://www-sequence.stanford.edu/group/yeast deletion project/

Essential ORFs.txt).

2.4.7 Orthologs

We use protein ortholog information from version 4 of the Princeton Protein Orthol-

ogy Database (P-POD) [62] (ftp://gen-ftp.princeton.edu/ppod/). We consider
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two proteins in different networks to be orthologous if they are categorized in the

same family by P-POD using either OrthoMCL or MultiParanoid.

For each pair of networks for two different organisms, we consider each pair of

hubs (H1, H2) where H1 and H2 are non-extremal hubs in the networks of organisms

1 and 2, respectively, that are reported to be orthologous. A hub can appear in several

pairs if it has more than one ortholog in another species. The Spearman correlation

coefficient is computed over hub pairs for various network characteristics (avPCC,

clustering coefficient, etc.).

Since a hub may contribute to several pairs of orthologs, in addition to using the

standard computation of the p-value for the Spearman correlation coefficient, we also

calculate an empirical p-value in the following way: the actual Spearman’s rho is

compared with the distribution of Spearman’s rho values calculated in exactly the

same manner as above, but for the characteristic (say, avPCC) among hubs randomly

permuted in each of the two networks (as opposed to permuting vector components

that contain repetitions). We report the empirical p-value of the actual correlation

with respect to the distribution of correlations from 1000 instances of randomized

data.

We test if the low range of a hub feature (say, avPCC) is evolutionary conserved

as much as the high range. For two networks of different organisms, we extract hubs

in the top one third and bottom one third as ranked by the feature computed in each

network. We calculate for each pair of hub groups (top third from the first organism

vs. top third from the second organism, top third from the first organism vs. bottom

third from the second organism, etc.) how many ortholog pairs are observed between

them. Then we compare this number with the number calculated in exactly the same

manner, but for 1000 random samples of the same number of hubs in each network,

and report the corresponding z-score and empirical p-value of the actual number of

orthologs compared with the distribution of the numbers for random data.
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Chapter 3

Genome-wide detection and

analysis of multifunctional genes

3.1 Introduction

Multifunctionality can be defined as the involvement of a gene in multiple cellular

processes [82]. This can come about either because the protein coded by the gene is

capable of performing distinct molecular functions [25, 26, 83, 84, 85], or as a result

of the same molecular function being reused in different contexts [28, 86]. Pioneering

experimental work led to the surprising finding that crystallins—the proteins respon-

sible for the optical properties of the eye lens—can also play non-refractive roles and

have enzymatic activity in other tissues [25]. This evolutionary strategy was named

“gene sharing” [27]. Further examples of proteins performing multiple molecular func-

tions were subsequently described: a uracil-DNA glycosylase that can also function

as glyceraldehyde-3-phosphatase dehydrogenase, or an enzyme like thrombin that can

moonlight as a ligand for surface receptors [26]. More recently, a large-scale screening

of mutants in yeast was performed to measure the pleiotropic effects of genes under

different conditions [87]. In the case of pleiotropy, a gene may perform only one
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molecular function, but it can be involved in multiple biological processes, and its

perturbation can therefore have pleiotropic consequences.

Based on existing functional annotations of genes, it is likely there are numerous

multifunctional genes within organisms. Despite the prevalence of multifunctional

genes, multifunctionality remains a poorly understood phenomenon. Identifying mul-

tifunctional genes at a genome-wide level and studying their properties can shed light

upon the complexity of the molecular events that underpin cell function, leading to

a new understanding of the functional landscape of genes.

Earlier computational studies have attempted to identify multifunctional genes

from the availability of functional annotations for genes in different organisms. Several

previous works measured multifunctionality by simply counting the number of distinct

Gene Ontology (GO) biological process terms annotating a gene product [88, 89, 90].

While straightforward, this approach does not always guarantee that a gene annotated

with more than one GO term is indeed involved in two distinct biological processes.

In particular, this is an incorrect assumption not only when one term is a direct de-

scendant of another term in the GO hierarchy, but also even when two terms are in

completely different branches of the ontology, as idiosyncrasies in GO may lead to sim-

ilar processes being categorized in distinct places in the ontology. Other approaches

have used protein-protein interaction data and defined as multifunctional those pro-

teins that are located at the intersection of overlapping clusters [91]. However, using

interaction data to identify multifunctional genes has the obvious drawback of pre-

venting an unbiased analysis of their network properties, as well as uncertainty due

to the computationally derived clusters themselves.

We develop a computational approach to leverage GO functional annotations of

genes in a systematic and robust manner. To handle similar terms that appear in

distant places in GO, we explicitly select sets of terms that co-occur less frequently

than expected by chance; these terms are then used to identify multifunctional genes.
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We apply our procedure to detect multifunctional genes to three organisms—human,

fly and yeast—and then in each organism compare the properties of multifunctional

genes against those of other genes. Our results across these species consistently show

that, as compared to other genes, multifunctional genes possess distinct physicochem-

ical properties, are more broadly expressed across cell types and tissues, tend to be

more evolutionarily conserved, are more likely to be essential, and are topologically

distinct in protein-protein interaction networks, in regulatory transcription factor–

gene networks and in genetic interaction networks. We also find that multifunctional

genes are significantly more likely to be involved in human disorders than other genes.

The same observations also hold for genes with multiple molecular functions.

3.2 Results

3.2.1 Genome-wide detection of multifunctional genes

We use functional annotations of genes in three organisms, H. sapiens, D. melanogaster,

and S. cerevisiae, to identify multifunctional genes in each of them at a genome-wide

level. To accomplish this, we use Biological Process GO annotations [7]. We define

as multifunctional all genes that have two or more distinct annotations by GO terms.

To be able to detect truly distinct terms, we require that they have comparable

specificity. The method is shown schematically in Fig. 3.1, and is briefly described

below (see Section 3.4 for details).

The Biological Process GO is a hierarchy of terms representing different aspects of

biological processes in a living organism. The terms range from very general (the most

general being biological process) to very specific, with a relationship between

terms indicating if a term implies another term. That is, each term annotates a set of

genes, and a term should annotate all genes that are annotated by the terms indicated

as more specific than this one in the hierarchy.
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Figure 3.1: Schematic representation of the pipeline to identify multifunctional genes.
We define as multifunctional all genes that have two or more annotations by distinct
terms of comparable specificity. (A) First, we extract a subset of Gene Ontology terms
at a comparable level of specificity. For a specificity threshold N , we select all terms
which annotate ≥ N , but < 2N genes, and each of their descendant terms annotates
< N genes. For example, if N = 90, then term A is selected because it annotates more
than 90 genes and less than 180 genes, and each of its descendant terms annotates
less than 90 genes. In contrast, term E is rejected, because its descendant term F
annotates more than 90 genes. Term H is also rejected, because it annotates more
than 180 genes. (B) Once the terms at a certain specificity level have been selected,
we extract all genes annotated with at least two such terms. In order to consider
annotations by distinct terms only, from the collection of all pairs of terms selected at
the chosen level of specificity, we filter out those that either share a common ancestor
(other than the root) or have a common descendant term in the GO graph. Further,
we remove all pairs of terms that co-annotate more genes than expected by chance, as
measured by the hypergeometric test. All genes co-annotated by some pair of terms
(chosen at any considered level of specificity) passing these two filters are considered
multifunctional.
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We start by selecting a subset of terms that annotate roughly the same number of

genes. The set of specific terms can be chosen at different specificity levels, represented

by a parameter N roughly corresponding to the number of genes annotated by a term.

Lower values of this parameter produce larger numbers of more specific terms, and

higher values result in smaller numbers of more general terms (Fig. B.1). We will

consider several distinct levels of specificity in identifying multifunctional genes and

call multifunctional all genes for which we find evidence of multifunctionality at some

specificity level.

Once the terms have been selected at a particular specificity level, we extract all

genes annotated with at least two such terms. In order to select only pairs of distinct

terms and make sure a gene annotated by both terms is truly multifunctional, we

apply several filters to pairs of terms. From the collection of all pairs of terms at a

particular specificity level, we filter out those that either share a common ancestor

(other than the root) or have a common descendant term in the GO graph, as these

events indicate that the terms are semantically related. However, this is not suffi-

cient to claim that the remaining pairs of terms are distinct. For example, the terms

aerobic respiration and mitochondrial translation do not have any ancestral

or descendant term in common in the GO hierarchy graph besides the most general

biological process term, but often co-annotate mitochondrial ribosomal proteins

and capture semantically distinct aspects of the same function. Therefore, we further

remove all pairs of terms that co-annotate more genes than expected by chance (de-

tected by hypergeometric test). All genes co-annotated by some pair of chosen terms

passing these two filters, for any set of chosen terms at each specificity level N con-

sidered, are called multifunctional. The more general terms allowed (i.e., the higher

the upper bound on N), the more multifunctional genes are detected (Fig. B.1).

In what follows, we compare multifunctional genes with all other annotated genes

in fly, human, and yeast in order to uncover significant differences in biological prop-
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Organism Number of
multifunc-
tional genes
detected

Total num-
ber of anno-
tated genes

D. melanogaster 1509 6354
H. sapiens 2517 9664

S. cerevisiae 876 4682

Table 3.1: Number of multifunctional genes
For each organism, we show the number of multifunctional genes detected by our
method and the total number of annotated genes (annotated by one of the terms
used to detect multifunctionality; see Fig. 3.1 and Section 3.4).

erties between the two groups. The number of multifunctional genes and the total

number of annotated genes for each organism is given in Table 3.1.

We note that multifunctional genes may appear more often in results of various

experiments and thus be more actively studied by researchers, and this could poten-

tially introduce a study bias in our analysis. In order to avoid this, in what follows, we

mostly focus on analysis involving unbiased high-throughput and whole-genome data

sets. When looking at association of multifunctional genes using manually curated

data which could potentially be biased, we directly correct for the study bias in order

to observe significant biological differences of multifunctional genes.

3.2.2 Proteins encoded by multifunctional genes are longer,

have more domains and have a higher fraction of dis-

ordered residues

We start the analysis by studying some basic physicochemical properties of pro-

teins. First, we hypothesize that multifunctional proteins may be longer in order

to accommodate more functional domains. To test this hypothesis, we compare the

lengths of the proteins encoded by multifunctional and other annotated genes in

D. melanogaster, H. sapiens, and S. cerevisiae, and find that multifunctional genes are
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significantly longer than other genes (p-values 1e−39, 1e−9, and 8e−12, respectively,

Mann–Whitney U test), on average by 39%, 16%, and 15%, respectively (Fig. 3.2).

We also observe that proteins encoded by multifunctional genes have significantly

higher numbers of distinct domains per protein (p-values 2e−7, 1e−10, and 2e−4,

respectively), on average by 17%, 13%, and 8%, respectively (Fig. 3.2). However,

note that longer proteins have more domains, so the difference in length between

multifunctional and non-multifunctional genes could explain the observed difference

in the number of domains; we cannot conclusively distinguish the cause from the

consequence (see Section B.1.1).

Another mechanism that has been proposed to explain multifunctionality is the

presence of intrinsically unstructured regions [29]. To determine whether multifunc-

tional proteins tend to be more disordered, we predict the fraction of disordered

residues using the IUPred program [92, 93], and find that multifunctional genes in

D. melanogaster, H. sapiens, and S. cerevisiae have a significantly higher fraction of

predicted disordered residues (p-values 6e−21, 7e−4, and 3e−14, respectively), on

average by 26%, 5%, and 31%, respectively (Fig. 3.2).

Overall, we find that proteins encoded by multifunctional genes are longer, have

more domains and are more disordered than other annotated genes.

3.2.3 Multifunctional genes are expressed more broadly in

fly and human

Differential gene expression is key in tissue and cell specificity. A gene expressed in

different contexts may have different functions depending upon how and when it is

expressed. Therefore we hypothesize that a gene associated with several functions

may be expressed in a larger number of contexts. In order to assess the relationship

between gene expression and gene multifunctionality, we use genome-wide mRNA

expression data and count in how many conditions, tissues or cell types each gene
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Figure 3.2: Proteins encoded by multifunctional genes are longer, have more domains
and are more disordered.
Boxplots for length, number of domains, and fraction of disordered residues in proteins
encoded by multifunctional and other annotated genes are shown for (A) fly (B) hu-
man and (C) yeast. Colored dots show the means, notches show bootstrap-generated
95% confidence intervals around the medians, boxes show quartile ranges, whiskers
extend to the most extreme data points within 1.5 times the size of the inner quartile
range. For genes in fly and human, if a gene had more than one protein isoform,
the longest isoform was considered. Multifunctional genes are significantly longer,
have significantly larger number of domains, and are significantly more disordered
(Mann–Whitney U test).

is expressed. For fly, we use two datasets: FlyAtlas [94], the Drosophila microarray

gene expression atlas across different tissues in larva and adult, and RNA-seq data

from modENCODE across many different tissues and development time points, as

aggregated by FlyBase [95, 96]. For human, we use information about organism parts

in which genes are expressed, obtained from Ensembl BioMart [97]. We observe that

in both human and fly, multifunctional genes are expressed more broadly than other
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Figure 3.3: Multifunctional genes are more broadly expressed.
Boxplots of the number of organism parts and/or conditions in which multifunctional
and other annotated genes are expressed are shown for (A) fly (microarray expression
data from FlyAtlas and RNA-seq expression data from modENCODE) and (B) hu-
man (GNF atlas and eGenetics expression data obtained from Ensembl). Colored dots
show the means, notches show bootstrap-generated 95% confidence intervals around
the medians, boxes show quartile ranges, whiskers extend to the most extreme data
points within 1.5 times the size of the inner quartile range. Multifunctional genes are
expressed in a significantly larger number of conditions than other annotated genes
(Mann–Whitney U test).

annotated genes; that is, they are expressed in significantly larger number of tissues or

organism parts (p-values from 7e−38 to 2e−4, Mann–Whitney U test; Fig. 3.3A-B).

A potential mechanism of gene multifunctionality is the production of multiple

protein isoforms with different functions using alternative splicing. Indeed, we observe

that multifunctional genes have a significantly larger number of known isoforms in

fly and human (Fig. B.2). If different isoforms of a gene have different expression

patterns, this gene may be detected as broadly expressed in genome-wide assays,

which currently report expression only at the gene level, merging information about

expression of different isoforms. Indeed, we observe a strong correlation between the

number of isoforms per gene and the number of tissues or organism parts in which
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it is expressed (Table B.1). However, when comparing genes with an equal number

of known isoforms, we still observe that multifunctional genes are expressed in larger

numbers of tissues or organism parts (although most p-values for human are above our

significance threshold of 5%; Fig. B.2). This indicates that multifunctional proteins

are more broadly expressed regardless of the number of isoforms.

We conclude that multifunctional genes are consistently more broadly expressed

than other annotated genes.

3.2.4 Multifunctionality is evolutionarily conserved

Acquiring multiple functions may constitute a special evolutionary strategy and limit

gene evolutionary rates; indeed it has been previously suggested that genes with mul-

tiple functions or associated phenotypes tend to be more evolutionary conserved [27,

88, 28, 98]. In order to study the evolutionary dynamics of gene multifunctionality

at a genome-wide level and in an unbiased manner, we use evolutionary conservation

scores from phastCons [99]. Scores in phastCons are computed using phylogenetic

hidden Markov models of multiple sequence alignments of D. melanogaster with 14

other insect genomes, H. sapiens with 99 other vertebrate genomes, and S. cerevisiae

with 6 other yeast species. For each nucleotide of the genome, phastCons produces

a score between 0 and 1, where higher values indicate stronger evolutionary conser-

vation. For each gene, we average the scores of all nucleotides of each isoform of the

gene, and then average over all isoforms of the gene to obtain a single value for each

gene, which is an estimate of how evolutionarily conserved the gene is. Previously,

a positive correlation between the number of biological process GO terms and evo-

lutionary conservation was observed for yeast [88, 28, 98]. In agreement with this,

we find that in fly, human, and yeast, multifunctional genes are significantly more

evolutionarily conserved than other annotated genes (p-values 5e−13, 6e−10, 0.02,

respectively, Mann–Whitney U test; Fig. 3.4).
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Figure 3.4: Multifunctional genes are more evolutionarily conserved.
Boxplots of evolutionary conservation (estimated by phastCons [99] for each nu-
cleotide, averaged over nucleotides of each gene) of multifunctional and other an-
notated genes are shown for (A) fly (B) human and (C) yeast. Colored dots show
the means, notches show bootstrap-generated 95% confidence intervals around the
medians. Multifunctional genes are significantly more evolutionary conserved than
other genes (Mann–Whitney U test).

Having showed that multifunctional genes evolve more slowly, we next hypoth-

esized that some of them may have become multifunctional early in evolutionary

history. In order to test this, we compare the property of multifunctionality for

orthologous proteins from different organisms. We use information about protein

orthology from P-POD [62] and count how many orthologs are observed between

proteins encoded by multifunctional genes from different organisms. Between fly

and human, we observe 1725 orthologous pairs of genes where one gene in a pair is

classified as multifunctional in fly and another gene in the pair is classified as mul-

tifunctional in human. To assess significance, we compute the same number when

randomly reshuffling multifunctional and non-multifunctional genes from orthologous

pairs in each organism, and observe on average only 845.1 ± 90.0 orthologous pairs,

the actual value being 2.0 times higher (empirical p-value < 1e−3). For fly and yeast,

we find 388 orthologous pairs between multifunctional genes (2.1 times higher than

184.7 ± 20.2 expected by chance, p < 1e−3). For human and yeast, we find 576

orthologous pairs between multifunctional genes (2.2 times higher than 267.2± 32.6

expected by chance, p < 1e−3). We conclude that the property of multifunctionality

is conserved across orthologous genes of different organisms.
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Figure 3.5: Multifunctional genes are involved in a significantly larger number of
regulatory and genetic interactions.
Boxplots of the number of regulatory and/or genetic interactions for multifunctional
and other annotated genes are shown for (A) fly, (B) human, (C) yeast. Colored dots
show the means, notches show bootstrap-generated 95% confidence intervals around
the medians, boxes show quartile ranges, whiskers extend to the most extreme data
points within 1.5 times the size of the inner quartile range. Multifunctional genes
are involved in significantly many more regulatory and genetic interactions (Mann–
Whitney U test).

3.2.5 Multifunctional genes are involved in more regulatory

and genetic interactions

Genes responsible for multiple functions in a cell may require more complex regulatory

programs to differentiate functions across multiple tissues or conditions. In order to

study how regulated multifunctional genes are, we use regulatory interactions from

high-throughput ChIP experiments [78, 100, 101, 102]. For each gene, we count

the number of transcription factor–target interactions this gene participates in as a

target. In all three organisms, we observe that multifunctional genes are regulated by

a significantly larger number of transcription factors than are other annotated genes

(p-values from 3e−54 to 7e−4, Mann–Whitney U test; Fig. 3.5).
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In addition to requiring more complex regulatory programs, multifunctional genes

may also be associated with more complex phenotypes that require interactions across

many other genes. In order to compare the distribution of genetic interactions between

multifunctional and other annotated genes, we use a collection of genetic interactions

curated by FlyBase [96] for fly and by BioGRID [5] for yeast. Previously, a positive

correlation between the number of biological process GO annotations and the number

of genetic interactions was observed for yeast [89]. In agreement with this, we observe

that in fly and yeast, the number of genetic interactions is significantly higher for

multifunctional genes than for all other annotated genes (p-values 5e−25 and 2e−55,

respectively; Fig. 3.5). Moreover, in a more refined comparison for yeast, we observe

that both the number of positive and the number of negative genetic interactions are

significantly larger for multifunctional than for non-multifunctional genes (p-values

9e−30 and 1e−40, respectively; Fig. 3.5).

3.2.6 Multifunctional genes are more often essential

A gene associated with multiple functions may be more important for the normal

functioning of the cell and therefore may potentially be more critical for survival

than a gene associated with a single function. In order to test this hypothesis, we

consider the relationship between gene essentiality and multifunctionality.

For fly, we call essential all genes with lethal phenotype (as curated by Fly-

Base [96]) and observe that 74% of multifunctional genes are essential, while only 44%

of other annotated genes are essential (p < 2e−86, hypergeometric test; Fig. 3.6A). In

addition, we use data from a genome-wide RNAi screen in cell lines [103] and observe

that, even though only a small fraction of genes in the study overall are detected as

essential, multifunctional genes have a significantly higher fraction of essential genes

than other annotated genes (3.8% and 2.9%, respectively, p < 0.046; Fig. 3.6B).
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Figure 3.6: Multifunctional genes are more likely to be essential.
Barplots showing the fraction of multifunctional and other annotated genes that are
essential in (A–B) fly (A, essentiality data from FlyBase; B, genome-wide RNAi screen
in cell lines, note different scale on x-axis) (C–D) human (C, orthologs of essential
genes in mouse; D, genome-wide RNAi screen in cell lines) and (E) yeast (essentiality
screen in rich medium). In fly and human, multifunctional genes are essential signif-
icantly more often, whereas in yeast the difference is not significant (hypergeometric
test). (F) Boxplot showing, for yeast genome-wide homozygous and heterozygous
gene deletion screen across a variety of conditions, the number of conditions in which
a gene is essential. Multifunctional genes are essential in significantly larger number
of conditions.

For human, we call essential all genes which have a mouse ortholog with a lethal

phenotype (according to MGI [104]). We find that 53% of multifunctional genes are

essential, whereas only 42% of other genes are (p < 7e−16; Fig. 3.6C). Using data

from a genome-wide RNAi screen in human mammary cells [105], we also observe that

multifunctional genes are essential significantly more often (p < 1e−34; Fig. 3.6D).

In a more detailed analysis using quantitative data about essentiality in 72 human
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cancer cell lines [106, 107], we confirm that in all 72 cell lines, multifunctional genes

are more essential (Fig. B.3).

In contrast, for yeast, when using information about essentiality for growth in rich

medium, we do not observe a significant difference in essentiality: 24% of multifunc-

tional genes and 26% of other annotated genes are essential (p = 0.11; Fig. 3.6E).

However, in a genome-wide screen of yeast homozygous and heterozygous deletion

strains across a variety of conditions, up to 97% yeast genes are reported as essential

in at least one condition [108]. Using these data, we count in how many conditions

each gene is detected as essential, and find that multifunctional genes are essential

in a significantly larger number of conditions than other annotated genes (p-values

2e−04 and 3e−03 for homozygous and heterozygous screens, respectively; Fig. 3.6F).

Overall, we observe that multifunctional genes are more likely to be essential than

other annotated genes.

3.2.7 Multifunctional genes are more often involved in hu-

man disorders

Being more critical than other genes for the survival and normal functioning of the cell,

multifunctional genes may potentially also be more likely to be associated with human

diseases. To address the relationship between gene multifunctionality and involvement

in human disorders, we use the gene-disease “morbid map” from the Online Mendelian

Inheritance in Man (OMIM) catalog [109], and calculate the fraction of genes with an

OMIM annotation among multifunctional genes found for human. We find that 32%

of all multifunctional genes are involved in at least one Mendelian disorder, whereas

the fraction of other annotated genes involved in at least one Mendelian disorder

is 21% (p < 8e−30, hypergeometric test; Fig. 3.7A).

To further investigate the relationship between gene multifunctionality and in-

volvement in human disorders, we look at genes involved in multiple distinct dis-
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Figure 3.7: Multifunctional genes in human are associated with more diseases.
(A) Barplot showing the fraction of multifunctional and other annotated human genes
that are associated with disease. (B) Barplot showing for the genes associated with
disease, the fraction of multifunctional and other annotated human genes that are
associated with two or more diseases. Multifunctional genes are associated with
significantly larger number of diseases (hypergeometric test).

orders. We map OMIM terms onto the Disease Ontology [110] and identify genes

with at least one pair of disjoint OMIM terms (i.e., diseases that fall into separate

branches of the Disease Ontology). We consider these genes to be involved in two or

more distinct diseases. When considering the genes involved in at least one disease

from Disease Ontology, we find that 18% of multifunctional genes are involved in at

least two diseases, while only 8% of other such genes are involved in at least two

diseases (p < 4e−8; Fig. 3.7B).

One might expect that genes involved in more disorders, as well as multifunc-

tional genes, are more actively studied by the research community, and this could

potentially introduce a study bias in our observations. Using the number of PubMed

publications associated with a gene as a proxy to how well studied the gene is, we

indeed confirm that multifunctional genes are more actively studied (Fig. B.4), but

show that our observations still hold when correcting for this bias. Namely, we ob-

serve that the fraction of multifunctional genes associated with disease is higher than

that for non-multifunctional genes with the same number of associated publications

as for multifunctional genes (Fig. B.5).

Overall, we observe that multifunctional genes are associated with diseases signif-

icantly more often than other annotated genes.
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3.2.8 Multifunctional genes tend to be intermodular in pro-

tein interaction networks

Genes associated with multiple functions may potentially play a more central role

in the global functional organization of the cell. Large-scale networks of physical

protein-protein interactions provide a good view of the cellular functional landscape.

In order to study how multifunctional genes are positioned in protein interaction

networks, we use the interaction data curated by BioGRID [5]. We use three measures

of centrality: degree, betweenness centrality, and participation coefficient. Degree is

the number of interactions in which a protein is involved. Betweenness centrality is

the number of shortest paths passing through a node in the network, and nodes with

higher betweenness are more globally central in the network. Participation coefficient

shows how well a protein’s interacting partners are distributed among clusters in the

network, so that proteins with low participation are mostly interacting with proteins

from the same cluster, whereas proteins with high participation have their interactions

spread among many clusters.

We observe that with respect to all three considered measures, multifunctional

genes are significantly more central than other genes (p-values from 2e−13 to 3e−50,

Mann–Whitney U; Fig. 3.8). However, not surprisingly, degree is correlated with

betweenness and participation (Fig. B.6), and the correlation of multifunctionality

with degree could potentially be the only explanation for the correlation with the other

two more complex measures. In order to test for this, we perform the comparisons

of betweenness and participation between multifunctional and other annotated genes

correcting for degree distribution, and still observe that multifunctional genes have

significantly larger betweenness and participation (Fig. B.6 and Table B.2).

In order to show that our observations are not affected by potential study bi-

ases, we repeat the comparisons of degree, betweenness, and participation between

multifunctional and other annotated genes in networks containing only interactions
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Figure 3.8: Multifunctional genes are more central in protein physical interaction
network.
Boxplots of degree (number of interactions), betweenness centrality, participation
coefficient of multifunctional and other annotated genes in the protein interaction
network are shown for (A) fly, (B) human, (C) yeast. Colored dots show the
means, notches show bootstrap-generated 95% confidence intervals around the me-
dians, boxes show quartile ranges, whiskers extend to the most extreme data points
within 1.5 times the size of the inner quartile range. According to all three measures
of centrality, multifunctional genes are significantly more central than other genes
(Mann–Whitney U test).

from high-throughput experiments, as reported in BioGRID [5] or HINT [76], and

observe similar results (Fig. B.7). Furthermore, in order to show that potential bias

in selection of baits in these high-throughput experiments does not affect our con-

clusions, we compare the number of bait-to-prey interactions only, as reported in

these high-throughput experiments. In particular, we only compare multifunctional

and non-multifunctional genes which are baits in these experiments, and observe the

same trends (Fig. B.7). Overall, we conclude that multifunctional genes are more
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centrally positioned in the protein interaction network, which may suggest an inter-

modular role in the interactome.

To further investigate the tendency for intermodularity of multifunctional genes,

we integrate the protein interaction network with GO annotations in order to deter-

mine if multifunctional genes tend to interact with several proteins having distinct

functions (i.e., be intermodular). For a GO term, we consider as a functional mod-

ule the set of all genes annotated by this term. Recall that by definition, a gene is

multifunctional if it is annotated with a pair of dissimilar GO terms of comparable

specificity. Therefore for a multifunctional gene and a pair of dissimilar terms anno-

tating it (as by our multifunctionality definition), we call this gene intermodular if it

interacts with the two modules in the network formed by genes annotated by these

two terms.

We observe that for fly, out of 1075 multifunctional genes in the protein-protein

interaction network, 267 genes are detected as intermodular according to the above

definition. When we repeat the computation in degree- and annotation-preserving

random networks (see Section 3.4), only 4.3± 2.2 multifunctional genes are detected

as intermodular, confirming that the actual number is highly significant. Similarly,

in human, out of 2160 multifunctional genes in the network, 828 genes are detected

as intermodular, while only 27.2 ± 5.2 are detected as such in random networks.

In yeast, out of 833 multifunctional genes in the network, 519 genes are detected

as intermodular, while only 21.8 ± 4.7 are called intermodular in random networks

(Table B.3).

Genes with many interactions are more likely to interact with any functional mod-

ules regardless of whether these genes are multifunctional or non-multifunctional.

Multifunctional genes tend to have many interactions (Fig. 3.8), and this could po-

tentially be the only explanation for their tendency for intermodularity in the above
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analysis. However, we repeat this analysis focusing only on genes with high degree,

and still observe that multifunctional genes tend to be intermodular (Table B.3).

Overall, this analysis confirms the strong tendency for the intermodularity of

multifunctional genes.

3.2.9 Multifunctionality with respect to molecular function

The main focus of our analysis so far has been on multifunctional genes detected using

the Biological Process ontology (BP-multifunctional). However, the same procedure

for detecting multifunctional genes can be applied to the Molecular Function ontology

(MF-multifunctional) instead, providing an orthogonal view of gene multifunctional-

ity.

We identify sets of MF-multifunctional genes for each organism and observe that

MF-multifunctional genes have all the same distinct biological properties when com-

pared with other annotated genes as has been reported in previous sections for the

BP-multifunctional genes (although some p-values for yeast were above our signifi-

cance threshold of 5%; see Fig. B.8, Fig. B.9, Fig. B.10).

In order to see if the involvement of a gene in multiple biological processes can be

explained by multiple functions of the gene at the molecular level, we directly compare

the two sets of multifunctional genes derived from the two ontologies. We observe

that between 12% to 35% of BP-multifunctional genes are also MF-multifunctional,

which constitutes a significant overlap (p < 6e−18, Table B.4), while the remainder

may potentially be explained by other modes of gene multifunctionality. In contrast,

a gene involved in multiple molecular functions might be expected to have these

molecular functions while performing different biological processes, and indeed most

MF-multifunctional genes are also BP-multifunctional (56% to 78%; Table B.5). Note,

however, that the total number of MF annotations is lower than the total number of

BP annotations (Tables B.4 and B.5), and thus the total number of genes identified

58



as MF-multifunctional is lower than the total number of genes identified as BP-

multifunctional (Table B.5).

3.3 Discussion

Most proteins are—to a certain extent—multifunctional. Even within this context,

previous experimental studies have identified proteins that perform remarkably dif-

ferent molecular functions [25, 26, 83, 84, 85], or that affect several distinct biological

processes [87, 28, 86]. These findings suggest the existence of a subset of genes that

are endowed with a particularly high degree of functional plasticity. Identifying such

genes and studying their properties can help elucidate the functional organization of

the cell. In this study, we have introduced a computational approach to systemati-

cally identify multifunctional genes using Gene Ontology annotations, and we have

shown that they are characterized by distinct properties as compared to other genes.

With respect to other studies, our approach specifically addresses some previous weak-

nesses in handling the Gene Ontology, such as the prior use of distinct GO terms that

nonetheless convey closely related functions to define multifunctionality. Further, we

have carried out inter-species comparisons, observing similar trends across three dif-

ferent organisms and thereby minimizing the effects of organism-specific annotation

biases. Special care was also taken in gauging the effects of study bias, particularly

in the case of interaction network properties and disease genes.

The main conclusion of our study is that gene multifunctionality is associated to

several distinct properties, including a higher number of protein domains, a higher

proportion of disordered regions in the protein sequence, more regulatory interactions,

and a tendency to occupy more central and intermodular regions in the interactome.

Determining which of these properties (or combinations of properties) represent the

main mechanism underlying the functional plasticity of a gene is of great interest. It
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is also possible to speculate that multifunctionality may be achieved via class-specific

mechanisms; i.e., certain mechanisms may be at play only for a given class of genes.

Another important aspect that needs to be addressed in greater depth is the role

played by context on protein function. In other words, what subset of functions are

carried out by a gene in a given spatio-temporal context? Being able to tease apart

the conditions under which a specific function is performed by a gene could lead to

the development of a context-specific Gene Ontology vocabulary. In this ontology, the

terms used to annotate genes could be qualified with other terms specifying the cell

type, the developmental stage, or the stage in the cell-cycle in which a given function

is most likely to be carried out by a gene.

In conclusion, a comprehensive understanding of gene and protein function has

been a major goal of computational biology since the emergence of the field. In this

work, we developed a computational method for genome-wide detection of multifunc-

tional genes using existing functional annotations. This allowed us to make a number

of novel observations about gene multifunctionality across several organisms, as well

as to confirm some previous findings (including in some cases where only anecdotal

evidence existed). Overall, our work contributes to a better systematic understanding

of the functional landscape of the proteome, and can be the basis for future work in

this direction as more specific and detailed functional genomics data become available.

3.4 Materials and Methods

3.4.1 Multifunctional genes

Gene Ontology (GO) [7] terms and gene association data for each organism were

downloaded from

http://www.geneontology.org/ on July 12, 2013. We excluded associations with

evidence codes IEA (“Inferred from Electronic Annotation”) , RCA (”Inferred from
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Reviewed Computational Analysis”), IPI (“Inferred from Physical Interaction”), ND

(“No Biological Data Available”) or the qualifier NOT.

We call multifunctional every gene which is annotated with at least “two suffi-

ciently distinct functional terms of comparable specificity”, as explained next.

To define terms of about equal specificity, we start with the notion of informative

terms used previously in the literature [111, 112, 113, 50], which selects for a given

N all terms that annotate ≥ N genes, but whose descendants annotate < N genes.

However, a very general term annotating many genes may have all descendant terms

annotating only small numbers of genes. In this case, with this definition of infor-

mative terms, a general term may be selected as informative for too small a value

of the parameter N , for which all other informative terms selected are much more

specific. For example, a fly term imaginal disc-derived wing morphogenesis

(GO:0007476) annotates 508 genes, but its descendant terms annotate no more than

82 genes each (248 genes in total), and it may be undesirable to call this term in-

formative for N ≈ 100, as it is actually a much more general term than other terms

which annotate approximately 100 genes. To overcome this problem, for a certain

ontology (e.g., Biological Process) and for a certain value of the parameter N indi-

cating specificity level, we select all terms which annotate ≥ N genes, but < 2N , and

whose every descendant term annotates < N genes.

For each N , for the terms at the specificity level N , we further select pairs of terms

that are sufficiently distinct. Terms annotating similar sets of genes may correspond

to similar functions, so first we filter out all pairs of terms which annotate significantly

overlapping sets of genes (hypergeometric test, p < 0.1). Then we remove all pairs of

terms with semantic similarity larger than zero [114]; in other words, we select only

the pairs of terms for which their least common ancestor is the root of the ontology.

Finally, we filter out pairs of terms that have a common descendant term, as this may

61



be an indication of similarity between the terms. We consider genes annotated by

pairs of terms at the specificity level N selected by this procedure as multifunctional.

We call multifunctional all genes for which we find evidence of multifunctionality

at a certain specificity level. We also would like to focus on more specific biological

process terms and avoid considering less informative more general terms annotating

a lot of genes. Namely, the final set of multifunctional genes is given by the

union of all sets obtained for different N , where N ranges from 10 up to certain

upper bound M , with increment of 10. We choose M = 120 in the main text. We

compare multifunctional genes with all other genes that are annotated with terms at

the specificity level N such that 10 ≤ N ≤M .

For GO analysis, we use code from the project goatools

(https://github.com/tanghaibao/goatools).

3.4.2 Data for comparison of multifunctional and other genes

Physicochemical properties of genes. Proteomes of D. melanogaster, H. sapi-

ens, and S. cerevisiae were downloaded from UniProt (September 2013 release). For

proteins encoded by all genes, we computed their length and average disorder. For

fly and human, we considered the longest protein isoform encoded by a gene (for

yeast, there was only one isoform per gene in the database). Domain information was

obtained from Pfam 27.0 [115], using the annotations contained in the swisspfam file.

We note that multiple instances of the same domain in a sequence were explicitly ig-

nored in the calculations of the number of domains. Prediction of disordered residues

was carried out using the IUPred program [92, 93], with default parameters. The

average fraction of disordered residues was then computed as the average fraction of

residues with a IUPred score above 0.5.

Expression. D. melanogaster : FlyAtlas project data [94] was downloaded

from GEO [58] (accession number GSE7763), and it consists of four replicates
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per condition. A gene is considered present in a tissue if it is detected as

present in all four replicates, as reported in the dataset. We also use RNA-

seq data from modENCODE [95] processed by FlyBase [96] as described in

http://flybase.org/reports/FBrf0221009.html, file

gene rpkm report fb 2013 05.tsv.gz. A gene with non-zero RPKM in a tissue

was considered present in this tissue. H. sapiens : Expression data for human was

downloaded using Ensembl BioMart, release 73 [97], using data sources “GNF/Atlas

organism part” for GNF Atlas [116] and “Anatomical System (egenetics)” for

eGenetics [117].

Evolutionary conservation. Evolutionary conservation scores from phastCons [99]

were downloaded from the UCSC genome browser website on December 10, 2013, for

D. melanogaster, H. sapiens, and S. cerevisiae, from

http://hgdownload.soe.ucsc.edu/goldenPath/dm3/phastCons15way/,

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phastCons100way/

hg19.100way.phastCons/,

and http://hgdownload.soe.ucsc.edu/goldenPath/sacCer3/phastCons7way/,

respectively. Conservation scores were averaged over nucleotides of exons of each

isoform and then averaged over isoforms. (For yeast, there was only one isoform

per gene.) For comparison across orthologs, we use protein ortholog informa-

tion from version 4 of the Princeton Protein Orthology Database (P-POD) [62]

(ftp://gen-ftp.princeton.edu/ppod/). We consider two proteins from different

organisms to be orthologous if they belong to the same family, as detected by P-POD

using either OrthoMCL or MultiParanoid.

Regulatory interactions. Regulatory TF–gene interactions were obtained from

DroID [78], version v2013 07 for D. melanogaster, from ENCODE [100] (file

enets1.Proximal raw.txt from http://encodenets.gersteinlab.org/) for
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H. sapiens, and from YeastMine [118] (downloaded November 24, 2013, high-

throughput interactions attributed to [101] or [102]) for S. cerevisiae.

Genetic interactions. Genetic interactions for fly were obtained from FlyBase [96],

version v2013 07, and for yeast from BioGRID [5], version 3.2.102. For yeast, positive

(evidence codes Positive Genetic, Synthetic Rescue) and negative (evidence codes

Negative Genetic, Synthetic Growth Defect, Synthetic Lethality) genetic interactions

were also considered separately.

Essentiality. Phenotype data was obtained for fly (FlyBase [96], version v2013 07),

human (mouse ortholog phenotype data from MGI [104], downloaded October

3, 2013), and yeast (from YeastMine [118], downloaded September 26, 2013).

Essential genes were defined as genes with “lethal” phenotype for fly, with any

phenotype containing “lethal” in its name for human, and with “inviable” pheno-

type for yeast. When applying a hypergeometric test for enrichment of essential

genes in multifunctional genes, the set of all genes with any reported phenotype

was used as a background (only genes from this background set were consid-

ered). In addition, sets of essential genes detected in genome-wide RNAi screens

in cell lines were obtained from OGEE [119] for fly [103] and human [105]. In

addtion, a more detailed analysis reporting a score of essentiality for each gene in

a genome-wide screen in each of 72 tested human cancer cell lines was obtained

from COLT-Cancer [106, 107] (file GARP-score.txt.tar.gz downloaded from

http://dpsc.ccbr.utoronto.ca/cancer/download.html). For yeast, we also used

the data from genome-wide heterozygous and homozygous gene deletion screens

across multiple conditions [108] from files hom.z tdist pval nm.pub

and het.z tdist pval nm.goodbatch.pub downloaded

from http://chemogenomics.stanford.edu/supplements/global/download.html,

for each gene counting the number of conditions for the corresponding deletion strain

with p-value below 0.01.
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Disease data. We used BioMart [120] to obtain gene-disease associations from the

Online Mendelian Inheritance in Man (OMIM) catalog [109]. Out of the 9,664 human

genes with at least one specific GO term, 2,299 had at least one OMIM association.

To further probe the similarity between diseases involving the same genes, we used

Disease Ontology [110], a knowledge base of human disorders that are hierarchically

organized in a directed acyclic graph. We mapped OMIM terms to Disease Ontology

terms using the OBO file available at http://disease-ontology.org/downloads.

Out of 2,299 genes with an OMIM association, 1,148 had at least one Disease Ontology

term. We focused on these genes with at least one Disease Ontology term, and

extracted from them all genes that had at least two Disease Ontology terms with

only the root node in common; this resulted in 135 genes, which we considered as

genes associated with at least two distinct diseases.

Physical protein-protein interactions. Physical protein-protein interactions were

obtained from BioGRID [5], version 3.2.102. Proteins with more than 200 interactions

were iteratively removed (i.e., the protein with the highest number of interactions

removed one at a time), in order to avoid experimental artifacts due to “sticky”

proteins. For extraction of high-throughput interactions, we considered only the

interactions indicated as high-throughput in the database and only from publications

contributing interaction data with at least 100 baits. For human and yeast, we also

considered high quality high-throughput interaction datasets from HINT [76].

PubMed publications. The number of PubMed publication IDs associated with

each gene was downloaded from NCBI at http://www.ncbi.nlm.nih.gov/gene on

September 18, 2013.

3.4.3 Comparison across orthologs

For each pair of organisms, we count how many orthologous pairs of multifunctional

genes are found where one gene in a pair is from one organism and the other gene in
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the pair is from the other organism. To assess significance, we repeat the computation

1000 times randomly and independently re-assigning genes in each organism to the

two gene classes of the same size as classes of multifunctional and non-multifunctional

genes, but preserving the orthology relationship between genes of different organisms.

In this randomization, only genes from orthologous pairs between the two organisms

are considered. Then we compute the average and standard deviation of the counts

in random trials and an empirical p-value of the real count with respect to the ran-

domized counts.

3.4.4 Network analysis

The degree of a vertex is the number of interactions that the corresponding protein

has in the network. The betweenness centrality of a vertex v is the number of

shortest paths between all pairs of vertices in the network that pass through v, with

the shortest paths between two genes s and t weighed inverse to the total number of

distinct shortest paths between s and t. The participation coefficient [80, 57] of a

vertex with respect to a set of clusters in a network is defined as P = 1 −
∑

i

(
ki
k

)2
,

where the sumation is over all clusters, k is the vertex degree, and ki is the number

of edges going from the vertex to vertices from the cluster i. The rationale is to have

P = 0 if all edges from the vertex go to a single cluster, and to have P closer to 1 if

edges from the vertex are more uniformly distributed over clusters. To find clusters in

the network, we used the SPICi clustering algorithm [22] with parameters optimized

with a simple exhaustive search procedure to approximately maximize Newman’s

modularity [81], as described in Section 2.4. For network analysis, we use the python

interface to the igraph library, version 0.6.5 (http://igraph.sourceforge.net/).

We integrate protein interaction networks with Gene Ontology to define intermod-

ular multifunctional genes. We call a multifunctional gene g intermodular if there is

a pair of dissimilar terms T1 and T2 annotating g (as detected for g according to the
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definition of multifunctionality given above) such that g has interactions with at least

one other gene annotated by T1 and at least one other gene annotated by T2. Here

genes in the network annotated by T1 and T2 (including g for each of these terms) are

considered as belonging to the corresponding functional modules. For assessing sig-

nificance, we repeat the computation in 200 degree-preserving random networks (as

implemented in method igraph.Graph.Degree Sequence() with option “vl” [59])

while preserving GO annotations of all genes, and compute the average and standard

deviation of the number of multifunctional intermodular genes in these random net-

works. We also repeat all the analysis focusing only on genes in top 20% or in top

5% in the network by the number of interactions.
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Chapter 4

Conclusion

In this thesis, we developed computational approaches for systematically analyzing

large-scale genomic and proteomic data in order to gain new knowledge about the

functioning of the cell.

In Chapter 2, we studied how simple properties of hub proteins are predictive of

their roles in the functional organization of cellular networks. For this, we leveraged

functional genomic data for five organisms, S. cerevisiae, H. sapiens, D. melanogaster,

A. thaliana, and E. coli. We showed that simple features of hubs in the network reveal

important aspects of the dynamics and modularity of the interactome. We showed

that this holds not only for the feature of average co-expression previously studied in

this respect [24], but also for other features that depend purely upon the topology of

the network, such as betweenness centrality, clustering coefficient, and participation

coefficient. We found that these features reflect intra- and inter-modularity of proteins

in the network. Working with data for several different organisms allowed us to

perform a cross-interactomic analysis. We showed that inter- and intra-modularity,

as measured by these simple hub features, is conserved across organisms.

In Chapter 3, we studied the role of multifunctional genes and the proteins that

they encode in the functional organization of the cell. For this, we used functional
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annotations for three organisms, S. cerevisiae, H. sapiens, and D. melanogaster. We

proposed a robust method to detect multifunctional genes, and distinguished them

from genes more likely to have a single function. We performed an analysis of mul-

tifunctional genes with respect to a number of different biological properties, and

showed that, as compared to other genes, multifunctional genes are longer, are more

disordered, are more broadly expressed, are more intermodular in protein interaction

networks, are regulated by larger number of transcription factors, tend to be more

evolutionarily conserved and are more likely to be essential. We also found that mu-

tations in multifunctional genes are significantly more likely to be associated with

human disorders.

In sum, our observations provide a better understanding of the functional orga-

nization of the cell. As more specific, high-quality and high-coverage genome-wide

and proteome-wide data become available, we believe our approaches to analyze these

data can reveal further details about the structure, function, and evolution of the cell.
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Appendix A

Supplementary information for

Chapter 2

A.1 Supplementary results

A.1.1 Hub classification analysis

Our classification of hubs into party, date and extremal for different networks

(Fig. A.1–A.6) yields results qualitatively similar to those reported for the Human-

hq network (Fig. 2.1).

The results of classification of all hubs are qualitatively the same as the results of

classification with extremal hubs excluded (Fig. A.7, compare with Fig. 2.1).

A.1.2 Analysis for a relaxed definition of hubs

For the three largest networks, we also considered a more relaxed definition of hubs,

where all genes with degree ≥ 3 are considered as hubs, instead of just the top 10%.

This results in 6762 hubs in Human-all (66.1% of all vertices), 4716 (83.6%) hubs in

Yeast-all and 4992 (60.7%) hubs in Fly. Results of our hub classification analyses

are largely the same as for hubs defined with a more selective definition (Fig. A.8–
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A.10). Furthermore, the results of correlation analysis of hub characteristics stay

largely the same as with a more selective definition (Fig. A.11).

We do however observe a higher betweenness for party hubs in Yeast-all when

considering as hubs all genes of degree ≥ 3 (Fig. A.9), which is the opposite trend

of when a higher hub threshold is used. This may be explained by the correlation of

degree with avPCC in this case, and the typically observed correlation between degree

and betweenness. Indeed, the SRCC between degree and avPCC is 0.32 (p < 1e−110),

the SRCC between degree and betweenness is 0.81 (p = 0), and the SRCC between

avPCC and betweenness is 0.21 (p < 9e−46). However, the partial SRCC of avPCC

and betweenness corrected for degree is −0.10 (p < 3e−11), which is consistent with

all previous observations (Fig. A.12).

A.1.3 Potential biases and confounding factors in the corre-

lation analysis of hub characteristics

The number of interactions of a protein in the network could be significantly correlated

with avPCC and other topological measures, and this may be a confounding factor

in the analysis [24]. Sometimes we indeed observe a correlation (Fig. A.13A). To

control for this, we calculate the Spearman partial correlation with a correction for

degree. High correlations of hub characteristics remain significant (see Fig. A.13B

and compare with Fig. 2.2).

In order to show that hubs with extremal properties do not bias the analysis of

correlations between hub features, we perform the same analysis, but with extremal

hubs excluded, and observe very similar results (see Fig. A.14 and compare with

Fig. 2.2).

A bias towards more studied genes could also be responsible for some of the

observed correlations [24]. In order to avoid that, we also perform the correlation
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analysis on high-throughput networks for yeast and human and observe the same

trends as for our main networks (see Fig. A.15, compare with Fig. 2.2).

A.1.4 GO annotations of hubs

We performed GO enrichment analysis for date and party hubs, as well as for classes

of hubs specified by other hub characteristics. These results are shown in Fig. 2.3

and in Fig. A.16–A.21. See Section 2.4 for details.

For the Fly, Athal and Ecoli networks, we observe results that are in general

similar to those for the human and yeast networks, though fewer terms are enriched.

A possible explanation for the fewer number of enriched terms may be that hubs in

these networks have fewer annotations than hubs in the networks of yeast and human.

We show in Table A.11 the fraction of hubs annotated with terms other than the root

in each ontology, and these numbers are considerably smaller for Fly, Athal and

Ecoli than for the yeast and human networks.

A.1.5 Correction for essentiality when studying the number

of genetic interactions of genes

Non-essential genes participate in a significantly larger number of genetic interactions

than essential genes, or in other words, essentiality is correlated with the number of ge-

netic interactions (Fig. A.24A). However, even after removing all essential genes from

consideration, the numbers of genetic interactions date and party hubs are involved

in are still significantly different (Fig. A.22CD). The partial correlation of avPCC and

the number of genetic interactions with correction for essentiality is almost as high

as without correction (see Fig. A.24B and compare with Fig. 2.4).
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A.1.6 Yeast two-hybrid and co-complex interaction networks

The date and party hub analysis on networks of only yeast two-hybrid or only co-

complex interactions for H. sapiens, S. cerevisiae, and A. thaliana (Fig. A.26–A.31)

confirms that the date/party distinction is observable in these networks as well,

though it is not as stringent for yeast two-hybrid as it is for co-complex networks.

A.1.7 Comparison of network topology properties for or-

thologs between organisms

We compute the Spearman correlation of various hub characteristics across networks.

The results for networks Human-all and Yeast-all are shown in Table 2.2, the

results for networks Human-hq and Yeast-hq are shown in Table A.5, and the re-

sults for the other networks are shown in Tables A.6–A.9 (organized per hub feature,

rather than per a pair of networks). We observe that clustering coefficient, as well

as betweenness centrality and participation coefficient, are highly correlated for net-

works of different organisms; this suggests that the placement and role of proteins

within networks tend to be conserved and are biologically meaningful properties. Sur-

prisingly, we do not observe the degree in the network, which is simply the number

of physical interactions, to correlate in most cases: the only significant correlations

were ρ = 0.23 (p < 0.01; empirical p = 0.006) for Yeast-all and Athal, ρ = 0.14

(p < 0.003; empirical p = 0.002) for Yeast-all and Human-all; this may be due to

which proteins are studied more extensively in different networks.

A.1.8 Correction for signal from random networks for ge-

netic interactions and essentiality

For correlations between hub characteristics (Fig. 2.2), we compared real correlations

with those observed in random networks (as reported in Secton 3.2). We also perform
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the same analysis for correlations between hub characteristics in yeast and the number

of genetic interactions. That is, for the yeast networks, we compute the average

correlation of the number of genetic interactions with avPCC, clustering, betweenness,

participation and functional similarity in 100 random networks generated to preserve

the number of physical interactions for each gene (see Fig. A.34A and compare with

Fig. 2.4 which shows the same bars for real networks). In all cases, correlations in

random networks are smaller by absolute value than significant correlations in real

networks.

We noticed, however, a surprisingly strong significant negative correlation of

avPCC and genetic degree in random counterparts of the network Yeast-all. We

noticed no such relationship when the network was randomized and the degree distri-

bution was not preserved (data not shown). We hypothesized that if the degrees of

genes in random networks are restricted to be the same as in the real physical inter-

action network, certain properties of the resulting randomized networks may preserve

structures and correlations in ways that are not entirely understood. For example, we

observed that hubs have a preference to interact with the same genes they interact

with in real networks when performing degree-preserving randomizations. This may

result in a positive correlation between avPCC in a random network and avPCC in

the real network, that leads to correlations between avPCC in the random network

and other traits (such as genetic interaction degree). To correct for the behavior of

avPCC in random networks, we generate another 100 random networks (separately

from those used for the plots) and compute for each hub the average of avPCC scores

in these networks. We denote the resulting hub score as avPCC-rand. We confirm a

positive Spearman correlation between avPCC in the real network and avPCC-rand

(0.60 in Yeast-hq and 0.74 in Yeast-all), though there is a large difference in the

magnitude of avPCC and avPCC-rand (mean of avPCC 0.14 vs mean of avPCC-rand

0.03 over all hubs in Yeast-hq, and mean of avPCC 0.16 vs mean of avPCC-rand
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0.04 over all hubs in Yeast-all). Then, we compute partial Spearman correlations

of the genetic degree and avPCC, clustering, betweenness, participation, and func-

tional similarity corrected for avPCC-rand, and the same values computed in random

networks (Fig. A.34B, compare with Fig. A.34A). The correlation between avPCC

and the genetic degree is significant even after this correction, and is close to zero in

random networks. Note again that random networks used for plots are different from

those used to calculate avPCC-rand.

We also perform the same analysis for essentiality and obtain similar results

(Fig. A.35); that is, there is a significant correlation of essentiality and other hub

features including avPCC even after correction for avPCC from random networks.

A.2 Supplementary materials and methods

A.2.1 Gene IDs

The following gene names were used as identifiers in networks and expression datasets.

S. cerevisiae: locus names such as YDL229W or YLR438C-A.

H. sapiens : Ensembl gene ids such as ENSG00000008988 or ENSG00000141510.

D. melanogaster : locus names such as CG14228 or CG9986.

A. thaliana: locus names such as AT1G66410 or AT5G42190.

E. coli : locus names such as B0015 or B4142.

All other gene identifiers were mapped to these using files from Saccharomyces

Genome Database (SGD)1, Profiling of Escherichia coli chromosome (PEC) database2,

EcoCyc project3, Arabidopsis Information Resource (TAIR)4, Database of Drosophila

1SGD features.tab from http://www.yeastgenome.org/
2PECData.dat from http://www.shigen.nig.ac.jp/ecoli/pec/
3gene-links.dat from http://ecocyc.org/ecocyc/index.shtml
4gene aliases.20101027 from http://www.arabidopsis.org/
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Genes & Genomes (FlyBase)5, Drosophila Interactions Database (DroID)6, and gene

mapping files downloaded using BioMart MartView interface7 for different organisms.

A.2.2 Interactions

The following interaction networks for five organisms are considered. In all networks,

self-loops and duplicate interactions were deleted. The size of each network is shown

in Table 2.1.

S. cerevisiae : Based on evidence types from BioGRID, interactions in Yeast-all

were annotated as ‘yeast two-hybrid’ (7810 in Yeast-all) and ‘co-complex’ (44610 in

Yeast-all), see Table A.12. Annotations of genetic interactions were taken from Bi-

oGRID evidence types: Negative Genetic, Synthetic Growth Defect, Synthetic

Haploinsufficiency, Synthetic Lethality for negative (96142 interactions in to-

tal) and Positive Genetic, Synthetic Rescue for positive (20068 interactions).

H. sapiens : Based on evidence types of interactions from [77], in the network

Human-all 14633 interactions were annotated as ‘yeast two-hybrid’ and 50390 were

annotated as ‘co-complex’, see Table A.12.

D. melanogaster : The network of physical protein-protein interactions Fly

was obtained by combining all interactions from DroID [78] version 2011 02 (25948

interactions, annotated ’yeast two-hybrid’), and from DPiM [38] (10623 coAP-MS

interactions reported as high-quality in the publication, annotated ’co-complex’).

A. thaliana : The network of protein-protein interactions Athal was formed

from datasets downloaded from IntAct [9] and BioGRID, as well as from the recent

publication [39]. First, 4707 interactions were obtained from BioGRID represented

by 881 publications, then from IntAct 2620 interactions were obtained from those 272

publications (out of total of 603) that were not present in BioGRID, in order to avoid

5gene map table fb 2011 06.tsv.gz and fbgn annotation ID fb 2011 06.tsv.gz from
http://flybase.org/

6FLY GENE ATTR.txt from http://www.droidb.org/
7http://www.biomart.org/biomart/martview

76



duplicate representation of interactions from the same publications with different gene

ids. These interactions were annotated as ‘yeast two-hybrid’ (3086 interactions) and

‘co-complex’ (3148 interactions) based on evidence types provided by BioGRID and

IntAct. All 6045 non-redundant interactions from [39], AI-1 dataset, were annotated

as ’yeast two-hybrid’, see Table A.12.

E. coli : The network of physical protein-protein interactions Ecoli was col-

lected from different databases via PSICQUIC View application [79] using query

(taxidA:83333 AND taxidB:83333) AND (type:physical

OR detmethod:(biophysical OR biochemical OR "two hybrid" OR affinity

OR "pull down")). This network consists mostly of co-complex data.

A.2.3 Expression datasets

The expression compendia for the five organisms are as follows:

H. sapiens: the GNF Atlas project data over 79 cell or tissue types [116] (down-

loaded from GEO, accession number GDS596) is used as the source of expression data

for human.

S. cerevisiae : In the GEO [58] database, aiming to construct an unbiased rep-

resentative expression compendium and following the approach of Han et al. [24], we

searched for keywords “stimulus response OR stress response OR cell cycle” while

limiting the search to Series data (GSE) having from 20 to 100 datapoints (upper

limit to avoid bias from large datasets), and publication date from 2006/07 to the

2011/07 (corresponding to the five years directly prior to when we gathered this

data). We took only genome-wide datasets that used only S. cerevisiae in microar-

ray experiments, and only those that after merging replicates would provide at least

10 datapoints. This resulted in a compendium of 20 datasets with the total of 540

expression datapoints (see Table A.13).
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D. melanogaster : An expression compendium was formed from a collection of

GEO datasets as was done for yeast (see above). Genome-wide RNA-seq data from

the modENCODE project [121], as analyzed and published by FlyBase [122, 123],

was added as well. This resulted in the compendium of 9 datasets with a total of

199 datapoints, from different types of cells including embryonic and various adult

fly tissues, and under different conditions including development and stress response

(see Table A.14).

A. thaliana : A compendium consisting of development data [124] (79 data-

points, from various tissues) and stress response data [125] (149 datapoints, from

cells from roots and shoots, as well as from cell cultures) from AtGenExpress project

was formed. Expression datasets were downloaded from the web page of the project8.

E. coli : An expression compendium of 362 datapoints was formed from two

smaller ones: a dataset consisting of 240 datapoints from different conditions with

several timepoints for each was obtained from [126] as a log ratio data file, and the

dataset of 122 datapoints corresponding to different conditions [127] was obtained

from GEO, accession number GSE6836.

A.2.4 Clustering the network for computing participation

coefficient

In order to compute the participation coefficient for hubs in a protein-protein inter-

action network, we first had to find clusters in the network. For this, we used the

SPICi clustering algorithm [22] with parameters optimized with a simple exhaustive

search procedure to approximately maximize Newman’s modularity [81].

Namely, SPICi has two main parameters: the minimum density threshold param-

eter d and the minimum increment ratio r. We run SPICi many times with different

parameters, and optimize for the resulting value of modularity. At the first stage we

8http://www.weigelworld.org/resources/microarray/AtGenExpress/
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run the algorithm with parameters d = 0.2, 0.4, 0.6, 0.8, 1.0 and r = d and select the

preliminary value of d = d0 that produces the maximum modularity. Then we do

a binary search for the optimal value of d in the segment [d0 − 0.14, d0 + 0.14] with

granularity 1/215, and for each hypothetical value of d, we optimize r in the segment

[0, d] with a step d/15.

This method produces, for example, parameters d = r = 0.09487 resulting in a

Newman’s modularity measure of 0.573881 for the network Human-hq, or parame-

ters d = r = 0.20215 resulting in a modularity measure of 0.253280 for Yeast-all.
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A.3 Supplementary figures

Figure A.1: Date and party hub classification analysis in yeast high quality network
(Yeast-hq).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.14;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.2: Date and party hub classification analysis in fly network of all physical
interactions (Fly).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.12;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.3: Date and party hub classification analysis in Arabidopsis network
(Athal).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.15;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.4: Date and party hub classification analysis in E. coli network (Ecoli).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.13;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.

83



Figure A.5: Date and party hub classification analysis in human network of all phys-
ical interactions (Human-all).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.24;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.6: Date and party hub classification analysis in yeast network of all physical
interactions (Yeast-all).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.21;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.

85



Figure A.7: Date and party hub classification analysis in human high quality network
(Human-hq) with extremal hubs included.
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.30;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.8: Date and party hub classification analysis in human network of all phys-
ical interactions (Human-all), with all genes of degree ≥ 3 as hubs.
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.12;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.9: Date and party hub classification analysis in yeast network of all physical
interactions (Yeast-all), with all genes of degree ≥ 3 as hubs.
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.08;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.10: Date and party hub classification analysis in fly network of all physical
interactions (Fly), with all genes of degree ≥ 3 as hubs.
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.12;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.11: Spearman correlation of hub characteristics in interaction networks,
with all genes of degree ≥ 3 as hubs.
Every bar represents a Spearman correlation between two characteristics of hubs in
one of the networks. Bars of significant correlations (absolute value > 0.1, p-value
< 0.05) have black edges. Smaller uncolored bars show average correlation (with
error bars depicting the standard deviations) in 20 random networks on the same
genes with the same number of interactions for each.
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Figure A.12: Spearman correlation of hub characteristics in interaction networks,
with all genes of degree ≥ 3 as hubs and with correction for degree.
Every bar represents a partial Spearman correlation corrected for degree between
two characteristics of hubs in one of the networks. Bars of significant correlations
(absolute value > 0.1, p-value < 0.05) have black edges. Smaller uncolored bars show
average correlation (with error bars depicting the standard deviations) in 20 random
networks on the same genes with the same number of interactions for each.
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Figure A.13: Correlation with degree is not a confounding factor in the correlation
analysis of hub characteristics.
(A) Every bar represents a Spearman correlation between a hub characteristic and
degree (the number of interactions) for hubs in one of the networks. (B) Every bar
represents a partial Spearman correlation corrected for degree between two charac-
teristics of hubs in one of the networks. Bars of significant correlations (absolute
value > 0.1, p-value < 0.05) have black edges. Smaller uncolored bars show average
correlation (with error bars for standard deviations) in 20 random networks on the
same genes with the same number of interactions for each.
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Figure A.14: Hubs with extremal properties do not bias the correlation analysis of
hub characteristics.
Every bar represents a Spearman correlation between two characteristics of non-
extremal hubs in one of the networks. Bars of significant correlations (absolute value>
0.1, p-value< 0.05) have black edges. Smaller uncolored bars show average correlation
(with error bars for standard deviations) in 20 random networks on the same genes
with the same number of interactions for each.
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Figure A.15: Spearman correlation of hub characteristics in high-throughput interac-
tion networks for human and yeast.
Every bar represents a Spearman correlation between two characteristics of hubs in
one of the networks. Bars of significant correlations (absolute value > 0.1, p-value
< 0.05) have black edges. Smaller uncolored bars show average correlation (with
error bars for standard deviations) in 20 random networks on the same genes with
the same number of interactions for each.
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Figure A.16: GO annotation enrichment analysis of hubs in Yeast-hq.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Yeast-hq.
See Fig. 2.3 for details.
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Figure A.17: GO annotation enrichment analysis of hubs in Human-all.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Human-all.
See Fig. 2.3 for details.
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Figure A.18: GO annotation enrichment analysis of hubs in Yeast-all.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Yeast-all.
See Fig. 2.3 for details.
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Figure A.19: GO annotation enrichment analysis of hubs in Fly.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Fly. See
Fig. 2.3 for details.
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Figure A.20: GO annotation enrichment analysis of hubs in Athal.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Athal. See
Fig. 2.3 for details.
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Figure A.21: GO annotation enrichment analysis of hubs in Ecoli.
GO annotation enrichment analysis of hubs divided in a 2-to-1 proportion by avPCC,
clustering, betweenness, participation and functional similarity scores in Ecoli. See
Fig. 2.3 for details.

Figure A.22: Genetic interactions for date and party hubs in yeast.
Date hubs participate in significantly larger number of genetic interactions than
party hubs, when date and party hubs are defined from yeast networks (A) Yeast-
hq (B) Yeast-all (Mann–Whitney U). Even when all essential genes are removed
from consideration, the same trend is observed for both networks (C) Yeast-hq and
(D) Yeast-all.

99



Figure A.23: Spearman correlation of hub characteristics with the number of negative
and positive genetic interactions.
(A) Every bar represents a Spearman correlation between a hub characteristic and
the number of negative genetic interactions for hubs in one of the physical interaction
networks for yeast. (B) Every bar represents a Spearman correlation between a hub
characteristic and the number of positive genetic interactions for hubs in one of the
physical interaction networks for yeast. Bars of significant correlations (absolute value
> 0.1, p-value < 0.05) have black edges.
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Figure A.24: Essentiality is not a confounding factor in the correlation analysis of
genetic degree with hub characteristics in yeast physical interaction networks.
(A) Every bar represents a Spearman correlation between essentiality (1 if essential,
0 otherwise) and the number of genetic interactions for hubs in one of the physical
interaction networks for yeast. (B) Every bar represents a partial Spearman corre-
lation between a hub characteristic and the number of genetic interactions corrected
for essentiality for hubs in one of the physical interaction networks for yeast. Bars of
significant correlations (absolute value > 0.1, p-value < 0.05) have black edges.
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Figure A.25: Spearman correlation of hub characteristics in yeast two-hybrid and
co-complex interaction networks.
Every bar represents a Spearman correlation between two characteristics of hubs in
one of the networks. Bars of significant correlations (absolute value > 0.1, p-value
< 0.05) have black edges. Smaller uncolored bars show average correlation (with
error bars for standard deviations) in 20 random networks on the same genes with
the same number of interactions for each.
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Figure A.26: Date and party hub classification analysis in human network of all
known interactions from yeast two-hybrid experiments (Human-all-y2h).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.08;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.27: Date and party hub classification analysis in human network of all
known interactions derived from complexes (Human-all-cocompl).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.30;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.28: Date and party hub classification analysis in yeast network of all known
interactions from yeast two-hybrid experiments (Yeast-all-y2h).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.08;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.29: Date and party hub classification analysis in the yeast network of all
known interactions derived from complexes (Yeast-all-cocompl).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.26;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.30: Date and party hub classification analysis in the Arabidopsis network
of all known interactions from yeast two-hybrid experiments (Athal-y2h).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.12;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.31: Date and party hub classification analysis in Arabidopsis network of all
known interactions derived from complexes (Athal-cocompl).
(A) Number of hubs in each class. Party hubs in this network have avPCC ≥ 0.30;
this threshold corresponds to the top third of avPCC values for all hubs categorized as
either party or date. (B) Betweenness, clustering coefficient, participation coefficient
and functional similarity for date and party hubs. (C) Density and expansion of date
and party hubs. (D) Effect of hub removal for party and date when considering the
average path distance, the size of the largest connected component, and the global
clustering coefficient. See caption of Fig. 2.1 for details.
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Figure A.32: Yeast two-hybrid and co-complex interactions of date and party hubs.
Date hubs have significantly many more binary (yeast two-hybrid, y2h) interactions,
while party hubs participate in significantly larger number of interactions derived
from complexes (co-complex, cocompl) in networks (A) Human-all (B) Yeast-all
(C) Athal (Mann–Whitney U).
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Figure A.33: Party hubs are more likely to be essential than date hubs.
Fraction of date and party hubs that are essential in (A) Yeast-hq (B) Yeast-
all. Party hubs are significantly enriched with essential genes (hypergeometric test).
Spearman correlation (with p-value) of essentiality indicator vector (1 if essential, 0
otherwise) and avPCC shown on bottom is significantly positive.
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Figure A.34: avPCC-rand is not a confounding factor in the correlation analysis of
hub characteristics and genetic degree in yeast physical interaction networks.
(A) Every bar represents a Spearman correlation between a hub characteristic and the
number of genetic interactions for hubs in one of the yeast networks. Bars of signifi-
cant correlations (absolute value > 0.1, p-value < 0.05) have black edges. (B) Every
bar represents a partial Spearman correlation between a hub characteristic and the
number of genetic interactions corrected for avPCC-rand for hubs in one of the yeast
networks. Smaller uncolored bars show average correlation (with error bars for stan-
dard deviations) in 100 random networks on the same genes with the same number
of interactions for each. Random networks used for the plot are different from those
used for the calculation of avPCC-rand.
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Figure A.35: avPCC-rand is not a confounding factor in the correlation analysis of
hub characteristics and essentiality in yeast physical interaction networks.
(A) Every bar represents a Spearman correlation between a hub characteristic and
essentiality (1 if essential, 0 otherwise) for hubs in one of the yeast networks. (B) Ev-
ery bar represents a partial Spearman correlation between a hub characteristic and
essentiality (1 if essential, 0 otherwise) corrected for avPCC-rand for hubs in one of
the yeast networks. Bars of significant correlations (absolute value > 0.1, p-value
< 0.05) have black edges. Smaller uncolored bars show average correlation (with
error bars for standard deviations) in 100 random networks on the same genes with
the same number of interactions for each. Random networks used for the plot are
different from those used for the calculation of avPCC-rand.
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A.4 Supplementary tables

clustering betweenness participation func. similarity

Human-hq 0.61 (7e−48) −0.54 (1e−36) −0.59 (1e−45) 0.59 (1e−44)
Yeast-hq 0.39 (5e−18) −0.36 (6e−15) −0.30 (2e−10) 0.42 (2e−20)

Fly 0.51 (5e−59) −0.28 (3e−17) −0.42 (2e−37) 0.50 (4e−55)
Athal 0.31 (5e−13) −0.20 (5e−06) −0.26 (2e−09) 0.25 (1e−08)
Ecoli 0.30 (6e−08) 0.03 (6e−01) −0.30 (4e−08) 0.30 (4e−08)

Human-all 0.56 (4e−79) −0.42 (2e−40) −0.58 (2e−83) 0.46 (4e−49)
Yeast-all 0.72 (1e−91) −0.55 (2e−45) −0.69 (6e−82) 0.56 (3e−49)

Table A.1: Spearman correlation of avPCC with clustering, betweenness, participa-
tion and functional similarity of hubs in the network.
All correlations except one are significant (p < 0.05) and are shown in bold. avPCC
is positively correlated with clustering coefficient and functional similarity, while neg-
atively correlated with betweenness centrality and participation coefficient. See also
Tables A.2, A.3, and A.4.

betweenness participation func. similarity

Human-hq −0.84 (4e−131) −0.85 (5e−135) 0.71 (6e−75)
Yeast-hq −0.78 (1e−94) −0.78 (3e−93) 0.57 (1e−39)

Fly −0.59 (1e−80) −0.86 (2e−250) 0.29 (4e−18)
Athal −0.57 (6e−49) −0.55 (5e−46) 0.31 (5e−14)
Ecoli −0.52 (5e−23) −0.84 (8e−85) 0.03 (6e−01)

Human-all −0.85 (5e−290) −0.96 (0) 0.26 (6e−17)
Yeast-all −0.78 (9e−116) −0.92 (4e−234) 0.68 (6e−78)

Table A.2: Spearman correlation of clustering coefficient with betweenness, partici-
pation and functional similarity of hubs in the network.
All correlations except one are significant (p < 0.05) and are shown in bold. See also
Tables A.1, A.3 and A.4.
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participation func. similarity

Human-hq 0.83 (2e−123) −0.62 (6e−52)
Yeast-hq 0.60 (1e−44) −0.43 (7e−22)

Fly 0.62 (2e−92) −0.09 (5e−03)
Athal 0.51 (1e−38) −0.09 (3e−02)
Ecoli 0.39 (6e−13) 0.09 (1e−01)

Human-all 0.83 (1e−263) −0.19 (2e−09)
Yeast-all 0.70 (1e−86) −0.54 (9e−44)

Table A.3: Spearman correlation of betweenness centrality with participation and
functional similarity of hubs in the network.
All correlations except one are significant (p < 0.05) and are shown in bold. See also
Tables A.1, A.2 and A.4.

func. similarity

Human-hq −0.65 (1e−58)
Yeast-hq −0.27 (4e−09)

Fly −0.21 (3e−10)
Athal −0.21 (4e−07)
Ecoli −0.03 (6e−01)

Human-all −0.27 (6e−19)
Yeast-all −0.59 (3e−54)

Table A.4: Spearman correlation of participation coefficient with functional similarity.
All correlations except one are significant (p < 0.05) and are shown in bold. See also
Tables A.1, A.3 and A.2.

characteristic ρ p-val
empirical
p-val

avPCC 0.23 0.005 0.001
clustering 0.62 7e−17 < 0.001
betweenness 0.53 6e−12 < 0.001
participation 0.58 2e−14 < 0.001
func. sim 0.49 4e−10 < 0.001

Table A.5: Spearman correlation for characteristics of orthologous hubs in Yeast-hq
and Human-hq.
Five hub characteristics for all 149 orthologous pairs between 109 hubs in Yeast-
hq and 124 hubs in Human-hq are significantly positively correlated, as measured
by Spearman’s rho (ρ) and the correspondingly determined p-values and empirical
p-values for 1000 random permutations of hubs. See Section 2.4 for details.
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networks 1 and 2 ρ p-val
empirical
p-val

#
or-
tho-
logs

#
hubs
org 1

#
hubs
org 2

Athal and Fly 0.38 2e−06 < 0.001 143 99 73
Yeast-all and Athal 0.26 0.005 0.004 115 48 67
Yeast-hq and Fly 0.26 0.002 0.001 136 100 117
Athal and Human-all 0.14 0.07 0.030 180 90 89
Athal and Human-hq 0.08 0.3 0.150 133 79 63
Fly and Human-all 0.02 0.7 0.362 316 201 235
Yeast-all and Fly −0.06 0.4 0.215 182 139 134
Yeast-hq and Athal −0.18 0.1 0.066 68 39 60

Table A.6: Spearman correlation of avPCC for orthologs between species.
avPCC correlation analysis for hubs in pairs of networks: Spearman’s rho, correspond-
ing p-value, empirical p-value for 1000 random permutations of avPCC among hubs,
the number of orthologous pairs of hubs and the numbers of hubs in each organism
involved into orthologs (only for hubs with assigned avPCC score). Correlations with
absolute value above 0.1 and both p-values < 0.05 are shown in bold. See Section 2.4
for details.

networks 1 and 2 ρ p-val
empirical
p-val

Yeast-hq and Athal 0.35 0.003 < 0.001
Athal and Human-hq 0.34 6e−05 0.001
Fly and Human-all 0.28 7e−07 < 0.001
Yeast-hq and Fly 0.25 0.003 0.003
Athal and Human-all 0.23 0.002 0.001
Yeast-all and Athal 0.22 0.02 0.012
Yeast-all and Fly 0.17 0.02 0.009
Athal and Fly −0.03 0.7 0.343

Table A.7: Spearman correlation of clustering coefficient for orthologs between
species.
Clustering coefficient correlation analysis for hubs in pairs of networks: Spearman’s
rho, corresponding p-value, empirical p-value for 1000 random permutations of clus-
tering coefficient values among hubs. Correlations with absolute value above 0.1 and
both p-values < 0.05 are shown in bold. See Section 2.4 for details.
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networks 1 and 2 ρ p-val
empirical
p-val

Yeast-all and Athal 0.42 3e−06 < 0.001
Athal and Human-hq 0.38 7e−06 < 0.001
Athal and Human-all 0.33 6e−06 < 0.001
Yeast-hq and Athal 0.37 0.002 0.001
Fly and Human-all 0.27 8e−07 < 0.001
Yeast-hq and Fly 0.26 0.002 0.001
Yeast-all and Fly 0.11 0.1 0.067
Athal and Fly −0.00 1.0 0.493

Table A.8: Spearman correlation of betweenness centrality for orthologs between
species.
Betweenness centrality correlation analysis for hubs in pairs of networks: Spearman’s
rho, corresponding p-value, empirical p-value for 1000 random permutations of be-
tweenness centrality values among hubs. Correlations with absolute value above 0.1
and both p-values < 0.05 are shown in bold. See Section 2.4 for details.

networks 1 and 2 ρ p-val
empirical
p-val

Fly and Human-all 0.19 9e−04 < 0.001
Yeast-hq and Athal 0.18 0.2 0.090
Yeast-all and Athal 0.15 0.1 0.043
Athal and Human-all 0.09 0.2 0.105
Athal and Human-hq 0.11 0.2 0.093
Yeast-hq and Fly 0.03 0.8 0.391
Yeast-all and Fly −0.03 0.8 0.395
Athal and Fly 0.02 0.9 0.436

Table A.9: Spearman correlation of participation coefficient for orthologs between
species.
Participation coefficient correlation analysis for hubs in pairs of networks: Spear-
man’s rho, corresponding p-value, empirical p-value for 1000 random permutations of
participation coefficient values among hubs. Correlations with absolute value above
0.1 and both p-values < 0.05 are shown in bold. See Section 2.4 for details.
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networks 1 and 2 ρ p-val
empirical
p-val

Yeast-hq and Fly 0.37 2e−05 < 0.001
Fly and Human-all 0.25 8e−06 < 0.001
Athal and Fly 0.24 4e−03 0.004
Yeast-all and Athal 0.19 0.04 0.022
Yeast-all and Fly 0.12 0.1 0.055
Athal and Human-all 0.05 0.5 0.211
Yeast-hq and Athal −0.02 0.9 0.424
Athal and Human-hq −0.06 0.5 0.260

Table A.10: Spearman correlation of functional similarity for orthologs between
species.
Functional similarity correlation analysis for hubs in pairs of networks: Spearman’s
rho, corresponding p-value, empirical p-value for 1000 random permutations of func-
tional similarity values among hubs. Correlations with absolute value above 0.1 and
both p-values < 0.05 are shown in bold. See Section 2.4 for details.

network BP CC MF none

Human-hq 97 96 74 3
Yeast-hq 92 96 71 2

Fly-hq 68 63 66 21
Athal 71 58 69 13
Ecoli 48 39 49 35

Human-all 85 86 61 10
Yeast-all 94 98 79 0

Table A.11: Fraction of hubs annotated with GO terms in each network.
For each network and for each ontology (Biological process, Cellular component,
Molecular function), we show the percentage of hubs annotated with at least some
terms other than the root (the most general) term in this ontology (BP, CC, MF),
and the percentage of hubs not annotated in any of the three ontologies (none).
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yeast two-hybrid co-complex

BioGRID Two-hybrid Affinity Capture-Luminescence

Affinity Capture-MS

Affinity Capture-RNA

Affinity Capture-Western

Co-purification

Reconstituted Complex

IntAct two hybrid tandem affinity purification

pull down

anti tag coimmunoprecipitation

anti bait coimmunoprecipitation

affinity chromatography

technology

Bossi
and
Lehner
2009

two hybrid

-two hybrid

two hybrid test

yeast

two hybridarray

two hybridpooling

sd4-two hybrid

lacz4-two hybrid

two h

affinitycapture ms

affin

gst pulldown

affinity

mass spectrometry

indirect complex

reconstitutedcomplex

affinity tag

affinity chromatography

co purification

direct complex

copurification

affinity c

affinity chrom

tandem affinitypurification

tap

literature annotated complex

affinity techniques

affinity co purification

affinitycapture western

affinit

pull down

Table A.12: Interaction evidence types from different sources used for interaction
annotation.
Note that evidence types from [77] are not organized in any formal vocabulary and
were parsed from Column 3 of the table with interactions using symbols |, (, ), and
: as punctuation.
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Table A.13: Datasets used in S. cerevisiae expression compendium.

GEO ac-
cession
number

publication or submission information #
data-
points

GSE29894 Cell cycle and G1 cyclins. Public on
Jun 11, 2011. Skotheim Lab, Stanford
http://web.me.com/skotheim/Site/People.html

32

GSE22904 Lewis JA, Elkon IM, McGee MA, Higbee AJ et al. Exploit-
ing natural variation in Saccharomyces cerevisiae to iden-
tify genes for increased ethanol resistance. Genetics 2010
Dec;186(4):1197-205. PMID: 20855568

18

GSE23204 The Role of the Rad4-Rad23 Complex and Rad4 Ubiquiti-
nation in UV-Responsive Transcription. Public on Aug 02,
2010. Humphryes N, Reed S. Cardiff University School of
Medicine

12

GSE22458 Bermejo C, Garca R, Straede A, Rodrguez-Pea JM et al.
Characterization of sensor-specific stress response by tran-
scriptional profiling of wsc1 and mid2 deletion strains and
chimeric sensors in Saccharomyces cerevisiae. OMICS 2010
Dec;14(6):679-88. PMID: 20958245

10

GSE15254 Staschke KA, Dey S, Zaborske JM, Palam LR et al. In-
tegration of general amino acid control and target of ra-
pamycin (TOR) regulatory pathways in nitrogen assimila-
tion in yeast. J Biol Chem 2010 May 28;285(22):16893-911.
PMID: 20233714

18

GSE15147 Eng KH, Kvitek DJ, Keles S, Gasch AP. Transient genotype-
by-environment interactions following environmental shock
provide a source of expression variation for essential genes.
Genetics 2010 Feb;184(2):587-93. PMID: 19966067

34

GSE18121 Gene expression regulation in response to heat stress in dif-
ferent yeast strains. Public on Nov 09, 2009. Cowart LA, Lu
X, Hannun Y. Medical University of South Carolina

21

GSE13653 Halbeisen RE, Gerber AP. Stress-Dependent Coordination of
Transcriptome and Translatome in Yeast. PLoS Biol 2009
May 5;7(5):e105. PMID: 19419242

12

GSE8335 Berry DB, Gasch AP. Stress-activated genomic expression
changes serve a preparative role for impending stress in yeast.
Mol Biol Cell 2008 Nov;19(11):4580-7. PMID: 18753408

32

GSE7645 Expression data for Saccharomyces cerevisiae oxidative stress
response. Public on Oct 24, 2007. Sha W, Martins A,
Laubenbacher R, Mendes P, Shulaev V. Virginia Bioinfor-
matics Institute

16
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GSE7362 The contribution of different nutrients to spore germination
in Saccharomyces cerevisiae. Joseph-Strauss D, Zenvirth D,
Simchen G, Barkai N. Spore germination in Saccharomyces
cerevisiae: global gene expression patterns and cell cycle land-
marks. Genome Biol 2007;8(11):R241. PMID: 17999778

38

GSE7358 Spore Germination in Saccharomyces cerevisiae : transfer of
wild type spores to rich (YPD) medium. Joseph-Strauss D,
Zenvirth D, Simchen G, Barkai N. Spore germination in Sac-
charomyces cerevisiae: global gene expression patterns and
cell cycle landmarks. Genome Biol 2007;8(11):R241. PMID:
17999778

31

GSE12270 Capaldi AP, Kaplan T, Liu Y, Habib N et al. Structure and
function of a transcriptional network activated by the MAPK
Hog1. Nat Genet 2008 Nov;40(11):1300-6. PMID: 18931682

29

GSE4987 Pramila T, Wu W, Miles S, Noble WS et al. The Forkhead
transcription factor Hcm1 regulates chromosome segregation
genes and fills the S-phase gap in the transcriptional circuitry
of the cell cycle. Genes Dev 2006 Aug 15;20(16):2266-78.
PMID: 16912276

25

GSE5376 Cell cycle of yeast deleted for yox1. Public on Sep 30, 2007.
Pramila T, Breeden LL. Breeden Lab, FHCRC

25

GSE6302 Levy S, Ihmels J, Carmi M, Weinberger A et al. Strategy
of transcription regulation in the budding yeast. PLoS One
2007 Feb 28;2(2):e250. PMID: 17327914

92

GSE8825 Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R et al.
Coordination of growth rate, cell cycle, stress response, and
metabolic activity in yeast. Mol Biol Cell 2008 Jan;19(1):352-
67. PMID: 17959824

36

GSE8982 Mating response — six alpha factor concentrations (0.06, 0.2,
0.6, 6, 60 and 600 nM). Public on Sep 11, 2007. Barkai
Lab, Department of Molecular Genetics, Weizmann Institute
of Science

33

GSE10521 Azzouz N, Panasenko OO, Deluen C, Hsieh J et al. Specific
roles for the Ccr4-Not complex subunits in expression of the
genome. RNA 2009 Mar;15(3):377-83. PMID: 19155328

14

GSE11397 Willis IM, Chua G, Tong AH, Brost RL et al. Genetic inter-
actions of MAF1 identify a role for Med20 in transcriptional
repression of ribosomal protein genes. PLoS Genet 2008 Jul
4;4(7):e1000112. PMID: 18604275

12
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Table A.14: Datasets used in D. melanogaster expression compendium.

GEO acces-
sion number

publication or submission information #
data-
points

GSE7763 FlyAtlas http://flyatlas.org. Chintapalli VR, Wang
J, Dow JA. Using FlyAtlas to identify better Drosophila
melanogaster models of human disease. Nat Genet 2007
Jun;39(6):715-20. PMID: 17534367

30

GSE6186 Whole Genome Drosophila Embryogenesis Time Course.
Public on Nov 02, 2006. Hooper SD, Boue S, Krause R,
Jensen LJ, Mason CE, Ghanim M, Furlong EE, White KP,
Bork P. State Lab, Department of Genetics, Yale University

28

GSE5430 Qin X, Ahn S, Speed TP, Rubin GM. Global analyses of
mRNA translational control during early Drosophila embryo-
genesis. Genome Biol 2007;8(4):R63. PMID: 17448252

39

GSE8892 Abundant genetic variation in transcript level during early
Drosophila development. Public on Aug 30, 2007. Nuzhdin
SV, Tufts DM, Hahn MW. Department of Biology, Indiana
University

18

GSE13303 Gene Expression during the Egg Development of Drosophila
melanogaster. Baker DA, Russell S. Department of Genetics,
University of Cambridge

12

GSE22354 Pavlopoulos A, Akam M. Hox gene Ultrabithorax regulates
distinct sets of target genes at successive stages of Drosophila
haltere morphogenesis. Proc Natl Acad Sci U S A 2011 Feb
15;108(7):2855-60. PMID: 21282633

12

GSE20497 Menin links the stress response to genome stability in
Drosophila melanogaster. Razak Z. Canadian Drosophila Mi-
croarray Centre http://www.flyarrays.com

12

GSE5147 Sørensen JG, Nielsen MM, Kruhøffer M, Justesen J et al.
Full genome gene expression analysis of the heat stress re-
sponse in Drosophila melanogaster. Cell Stress Chaperones
2005 Winter;10(4):312-28. PMID: 16333985

18

modENCODE Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff
S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM,
Micklem G, Piano F, Snyder M, Stein L, White KP, Wa-
terston RH; modENCODE Consortium. Unlocking the se-
crets of the genome. Nature. 2009 Jun 18;459(7249):927-
30. PMID: 19536255. As analyzed and published by FlyBase
http://flybase.org at FlyBase High Throughput Expres-
sion Pattern Data Beta Version, FBrf0212041 (2010.10.13)
http://flybase.org/reports/FBrf0212041.html

30
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Appendix B

Supplementary information for

Chapter 3

B.1 Supplementary results

B.1.1 Length and number of domains in multifunctional and

other annotated proteins

We observe that proteins encoded by multifunctional genes are significantly longer

than proteins encoded by other annotated genes (see main text and Fig. 3.2). Equiv-

alently, whether a gene is multifunctional is positively correlated with the length of a

protein: Spearman’s ρ = 0.17 (p < 6e−40) for D. melanogaster, ρ = 0.06 (p < 2e−9)

for H. sapiens, and ρ = 0.10 (p < 1e−11) for S. cerevisiae. Also, proteins encoded

by multifunctional genes have a significantly larger number of unique domains than

proteins encoded by other annotated genes (see main text and Fig. 3.2). Equivalently,

multifunctionality has a significant positive Spearman correlation with the number

of unique protein domains: ρ = 0.07 (p < 1e−7) for D. melanogaster, ρ = 0.07

(p < 4e−11) for H. sapiens, and ρ = 0.06 (p < 1e−4) for S. cerevisiae.
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However, one may expect that longer proteins have more domains, so the differ-

ence in length could explain the difference in the number of domains between multi-

functional and other annotated genes. Indeed, we observe strong significant positive

Spearman correlation between protein length and the number of unique domains in all

three organisms: ρ = 0.52 for D. melanogaster, ρ = 0.65 for H. sapiens, and ρ = 0.61

for S. cerevisiae. We compute the partial Spearman correlation between multifunc-

tionality and the number of domains with a correction for protein length and observe

a significant (though small) value only for human: ρ = 0.04 (p < 2e−4). Therefore

the difference in length between multifunctional and other annotated proteins may

indeed explain the significant difference in the number of domains, or the difference

in the number of domains between multifunctional and other annotated proteins may

indeed explain significant difference in length. Further investigation is required.

B.2 Supplementary materials and methods

B.2.1 Comparison of multifunctional and other annotated

genes with correction for a gene feature

Comparison of the set of multifunctional genes M and other annotated genes N with

correction for a gene feature f—e.g., degree or the number of associated publications

(one value for each gene)—is performed as follows. We sample with replacement

n = 1000 times independently at random from the set of genes N , so that each

sample si is the list of the same number of genes as M (potentially with repetitions)

having the same distribution of the feature f as M . The procedure to select each

sample s is as follows. Start with a list l of size |M | of genes each of which is chosen

from N uniformly at random. Then repeat the following: on each step try to swap

a random element in l with a random gene from N , and accept the swap only if the

distributions of f on l and M become more similar to each other, as measured by the
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Mann–Whitney U statistic. Continue with these steps until the relative change in

the U statistic has been less than 10−4 in the past 100 steps (in practice this requires

< 105 steps). The samples si, i = 1, . . . , n produced with this method are used for

the corrected comparison of M and N .

For a corrected comparison of M and N with respect to a certain gene property

D—e.g., association with disease (given as a set of genes having the property)—

compute the frequency x of D in M and frequencies yi of D in samples si. Then,

estimate the corrected frequency ofD inN as the median of all yi. Use the distribution

of yi to compute the 95% confidence interval (using 2.5% quantile cutoffs on both

sides) and the empirical p-value (as the fraction of times x is higher than yi). Similarly,

for the comparison with respect to a gene feature B—e.g., betweenness centrality (one

value for each gene)—compute the distribution of B in M , including the median b.

Also, compute the distributions of B in each sample si, including the medians bi.

Then, estimate the corrected median of B in N as the median of all bi. Also, use the

distribution of bi to compute the 95% confidence interval (using 2.5% quantile cutoffs

on both sides) and the empirical p-value (as the fraction of times b is higher than

bi). Use the distributions of B in samples si all merged together to compute 25% and

75% quantiles.
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B.3 Supplementary figures
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Figure B.1: Effect of varying parameters in the definition of multifunctional genes
(A-C) Terms chosen at different specificity levels. The number of Biological Process
(BP) Gene Ontology (GO) terms chosen is shown for each specificity threshold from
10 to 200 (increment of 10) for (A) fly, (B) human, (C) yeast. (D-F) Genes anno-
tated with terms chosen at different specificity levels. For each M from 10 to 200
(increment of 10), the cumulative number of genes annotated with terms chosen for
specificity thresholds N ≤ M is shown for (D) fly, (E) human, (F) yeast. Horizontal
line shows the total number of genes annotated with any BP term. (G-I) Fraction
of multifunctional genes in all annotated genes. For each specificity threshold, the
fraction of the cumulative number of multifunctional genes to the total number of all
genes annotated with terms chosen at this threshold is shown for (G) fly, (H) human,
(I) yeast. See Section 3.4 for details.
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Figure B.2: Multifunctional genes have more isoforms in fly and human.
Boxplots of the number of isoforms per gene for multifunctional and other annotated
genes in (A) fly and (B) human. Multifunctional genes have significantly larger num-
ber of isoforms (Mann–Whitney U). (C) Boxplots of the number of conditions in
which multifunctional and other annotated genes in fly are expressed, for genes with
one isoform only (which constitute 49% of multifunctional genes and 59% of other
annotated genes). (D) Boxplots of the number of organism parts in which multi-
functional and other annotated genes in human are expressed, for genes with 2 to
5 isoforms (17% of multifunctional and 18% of other genes have 2 isoforms, 14% of
multifunctional and 14% of other genes have 3 isoforms, 10% of multifunctional and
11% of other genes have 4 isoforms, 9% of multifunctional and 8% of other genes have
5 isoforms). See Fig. 3.3 for comparison across all genes.
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Figure B.3: Multifunctional genes are more essential in human cancer cell lines.
For each of 72 human cancer cell lines (x-axis) in the COLT-Cancer database [106, 107]
the median of GARP score of essentiality, as reported in the database, is shown for
multifunctional (cyan) and all other annotated genes (red) on y-axis; lower GARP
scores depict higher essentiality. Multifunctional genes are more essential than the
other annotated genes in all 72 cell lines.
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Figure B.4: Multifunctional genes have been more studied than other genes.
Boxplots of the number of PubMed publications associated with multifunctional and
other annotated genes are shown for (B) fly (C) human and (D) yeast. Multifunctional
genes are associated with significantly larger number of publications (Mann–Whitney
U test).

0.24 0.30

other

multifunc

with disease
p = 0.009

0.10 0.15 0.20

with two diseases
p < 0.001

Figure B.5: Comparison of association of multifunctional and other human genes with
diseases corrected for study bias.
Fractions of multifunctional (cyan) and non-multifunctional (red) genes associated
with diseases are shown (same as in Fig. 3.7), as well as the estimated fraction in
non-multifunctional genes after correction for study bias (olive, with the box for 95%
confidence interval, and empirical p-value). The estimation is from 1000 independent
random samples from the set of non-multifunctional genes, where the samples have the
same distribution of the number of associated publications as multifunctional genes.
Multifunctional genes are associated with significantly larger number of diseases even
after correction for study bias. See Section B.2 for details.
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Figure B.6: Comparison of centrality in protein-protein physical interaction networks
of multifunctional and other genes corrected for degree distribution.
(A) Barplot of Spearman correlation of degree with betweenness centrality and partic-
ipation coefficient in physical protein-protein interaction networks. Degree is highly
correlated with both measures. (B–D) Comparison of betweenness and participation
of multifunctional and non-multifunctional genes with correction for degree. Box-
plots show the distribution of betweenness or participation for multifunctional and
non-multifunctional genes for (B) fly, (C) human, (D) yeast (same as in Fig. 3.8),
while on top of that in magenta color the distribution of the same measure is shown
for random samples from the set of non-multifunctional genes, where the samples have
the same distribution of degree as multifunctional genes. Vertical line shows the esti-
mated median, box shows 95% confidence interval around the median, and horizontal
line shows 25%–75% quantile range. After correction for degree, betweenness and par-
ticipation of multifunctional genes are significantly higher than for other annotated
genes (as by empirical p-value for comparison between medians). See Section B.2 for
details.
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Figure B.7: Centrality of multifunctional genes in high-throughput protein physical
interaction networks.
Boxplots with three measures of centrality—degree (number of interactions), between-
ness centrality, participation coefficient—in high-throughput protein interaction net-
works of multifunctional and other annotated genes are shown for (A) fly (BioGRID),
(B) human (HINT), (C) human (BioGRID), (D) yeast (HINT), (E) yeast (BioGRID).
Multifunctional genes are significantly more central than other genes (Mann–Whitney
U test) in high-throughput networks that are not prone to bias towards more studied
genes. For an even stricter comparison, the degree of bait genes—i.e., number of inter-
actions from bait to prey genes in these high-throughput experiments—is compared
between multifunctional and all other annotated genes, and the trend is confirmed in
all networks (A–E).

131



Figure B.8: Analysis of multifunctional genes in D. melanogaster obtained using the
Molecular Function ontology.
Comparison of multifunctional and other annotated genes obtained from the Molec-
ular Function Gene Ontology using our method (see Fig. 3.1 and Section B.2).
(A) Physicochemical properties (compare with Fig. 3.2A). (B) Expression (compare
with Fig. 3.3A). (C) Evolutionary conservation (compare with Fig. 3.4A). (D) Reg-
ulatory and genetic interactions (compare with Fig. 3.5A). (E) Essentiality (FlyBase
curated; compare with Fig. 3.6A). (F) Centrality in protein-protein interaction net-
works (compare with Fig. 3.8A).
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Figure B.9: Analysis of multifunctional genes in H. sapiens obtained using the Molec-
ular Function ontology.
Comparison of multifunctional and other annotated genes obtained from the Molec-
ular Function Gene Ontology using our method (see Fig. 3.1 and Section B.2).
(A) Physicochemical properties (compare with Fig. 3.2B). (B) Expression (compare
with Fig. 3.3B). (C) Evolutionary conservation (compare with Fig. 3.4B). (D) Reg-
ulatory interactions (compare with Fig. 3.5B). (E) Essentiality (mouse orthologs;
compare with Fig. 3.6C). (F) Association with diseases (compare with Fig. 3.7).
(G) Centrality in protein-protein interaction networks (compare with Fig. 3.8B).

133



Figure B.10: Analysis of multifunctional genes in S. cerevisiae obtained using the
Molecular Function ontology.
Comparison of multifunctional and other annotated genes obtained from the Molec-
ular Function Gene Ontology using our method (see Fig. 3.1 and Section B.2).
(A) Physicochemical properties (compare with Fig. 3.2C). (B) Evolutionary conser-
vation (compare with Fig. 3.4C). (C) Regulatory and genetic interactions (compare
with Fig. 3.5C). (D) Essentiality (compare with Fig. 3.6EF). (E) Centrality in protein-
protein interaction networks (compare with Fig. 3.8C).
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B.4 Supplementary tables

expression assay Spearman’s ρ

D. melanogaster
FlyAtlas 0.18 (p < 5e−61)

modENCODE 0.20 (p < 3e−80)

H. sapiens
GNF Atlas 0.12 (p < 5e−34)
eGenetics 0.33 (p < 5e−238)

Table B.1: Genes with more isoforms tend to be detected as more broadly expressed.
Spearman correlation (with significance p-value) of the number of isoforms of a gene
and the number of tissues or organism parts in which the gene is expressed, according
to genome-wide assays in fly and human (see Section 3.4).

correlation with multifunctionality
organism degree betweenness participation

fly 0.13 (p < 1e−15) 0.15 (p < 1e−19) 0.12 (p < 3e−13)
human 0.15 (p < 1e−36) 0.17 (p < 1e−50) 0.13 (p < 6e−31)
yeast 0.15 (p < 2e−21) 0.16 (p < 6e−26) 0.18 (p < 1e−31)

partial correlation with multifunctionality corrected for degree
organism betweenness participation

fly 0.07 (p < 2e−5) 0.05 (p < 2e−3)
human 0.10 (p < 3e−17) 0.05 (p < 4e−5)
yeast 0.07 (p < 6e−6) 0.13 (p < 4e−18)

Table B.2: Comparison of multifunctionality and centrality in protein-protein physical
interaction networks.
In the first part of the table, we show Spearman correlations (with significance p-
values) of gene multifunctionality (1 or 0 for a gene depending on whether it is mul-
tifunctional or not) with degree, betweenness, and participation in protein-protein
interaction networks. All correlations are positive and significant (compare with
Fig. 3.6). In the second part of the table, we show partial Spearman correlations
of gene multifunctionality with betweenness and participation corrected for degree.
All partial correlations are small but positive and are statistically significant (compare
with Fig. B.6).
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