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Abstract

The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to
comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional
organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic
modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the
protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and
confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with
their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the
latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures
are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and
therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these
simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that
purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as
well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of
hubs in interactomes.
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Introduction

A better understanding of protein interaction networks would

be a great aid in furthering our knowledge of the molecular

biology of the cell. Towards this end, large-scale protein-protein

interaction (PPI) networks have been determined for a diverse set

of model organisms and for human [1–12]. Computational

analyses of these networks have revealed many important aspects

of cellular organization and functioning [13,14], including a strong

link between the topological characteristics of cellular networks

and their underlying functioning. One fundamental finding is that

PPI networks are modular: they tend to consist of groups of tightly

interacting proteins corresponding to functional modules or

protein complexes [15–20]. Further, from early on, it has been

apparent that hubs—proteins participating in many interactions—

have special roles in PPI networks: they tend to be more essential,

more evolutionarily conserved, and in human are enriched in

genes over-expressed or mutated in cancers [21–28]. It is naturally

interesting to combine these two well-studied views of PPI

networks and to ask how hubs are positioned with respect to the

modular organization of the cell.

Specific contextual information about interactions would be of

great help in understanding the connection between hubs and

modularity. For most interactions of a protein in a network,

however, we typically do not know whether these interactions

occur at the same time or under different conditions. In order to

understand the dynamic roles of hubs and their relationship to

network modularity, a highly influential study integrated PPI data

with gene expression data measured in numerous conditions, and

classified hubs based on their average co-expression with their

interacting partners [29]. Hubs that have high average co-

expression with their partners were classified as ‘‘party,’’ as they

are likely to interact with these other proteins at the same time.

Conversely, hubs that have low average co-expression with their

partners were classified as ‘‘date,’’ as they are likely to interact with

their partners at different moments of time. In an analysis of the S.

cerevisiae interactome, date and party hubs were shown to exhibit

different biological properties that imply different roles in the PPI

network. In particular, date hubs were found to have more

diversity in their subcellular localizations, a more drastic effect on

network connectivity when removed from the network, higher

centralities in a network of genetic interactions, and higher

evolutionary rates [29–31]. Further, it was argued that date hubs

are global connectors of different modules whereas party hubs are

more local and play specific roles in modules.

Though the classification of hubs into party and date has been

generally accepted [6,24,30,32–34], it has also generated signif-

icant controversy [35–37]. It has been proposed that the observed

date/party hub distinction may be an artefact of biases in the

datasets used or of the analysis methodology. Whereas the initial

work [29] observed a bimodality in the distribution of average co-

expression across hubs and used this to partition hubs into party or
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date, this bimodality has not been observed in subsequent studies

[31,35–37]. Further, it has been suggested that the difference in

the effect on network connectivity of removing either all the date

or party hubs is attributable to a difference in the total number of

interactions of date and party hubs, that date and party hubs

evolve at the same rate, and that there is no evidence of different

centrality in the genetic network for date and party hubs [35,36].

Finally, it has been argued that the observed differences in the

topological properties between date and party hubs in the network

may be attributable only to a small number of date hubs with

extreme properties, while the remaining hubs are much more

homogeneous [37].

The current availability of large-scale interaction networks for

numerous organisms across the evolutionary spectrum provides us

with an opportunity to systematically analyze whether properties

of hubs are predictive of the roles they play in the functional

organization of cellular networks. We use interaction networks for

five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and

E. coli, along with multiple mRNA expression datasets. In each of

these organisms, we show that the average co-expression of a hub

with its partners, independent of any categorization of hubs,

reveals important properties of hubs: the average co-expression of

a hub with its interacting partners is significantly positively

correlated with its local clustering coefficient as well as its average

biological process similarity with its interacting partners, and is

significantly negatively correlated with its betweenness centrality

and its participation coefficient (a topological measure that reflects

the diversity of the intermodular interactions of a protein). Further,

the average co-expression of a hub with its interacting partners is

negatively correlated with its interaction degree in genetic

networks, and positively correlated with protein essentiality.

Importantly, the correlations uncovered between average co-

expression and topological features—independent of any classifi-

cation of hubs—imply that the topological features of hubs by

themselves reflect important aspects of the dynamics and

modularity of the interactome. For example, hubs with low

betweenness or high clustering coefficient will tend to have high

average co-expression with their partners and fewer genetic

interactions, whereas proteins with high betweenness or low

clustering coefficient tend to exhibit the opposite trends. Further,

as part of our study, we revisit the date-party controversy. We

consider a very simple criterion to classify hubs as either party or

date, and confirm significant and consistent functional and

topological differences in the properties of date and party hubs

across organisms. Finally, in a cross-interactomic analysis, we

demonstrate that these simple topological and co-expression

properties of hub proteins tend to be conserved across organisms,

giving further evidence that these features reflect important aspects

of cellular functioning.

Results

Preliminaries
We begin by briefly describing our data and analysis framework

(see Materials and methods for details). We analyze PPI

networks for H. sapiens, S. cerevisiae, D. melanogaster, A. thaliana, and

E. coli (denoted by Human-all , Yeast-all , Fly , Athal, and

Ecoli, respectively). For human and yeast, we additionally

consider networks consisting of high-confidence interactions only

(denoted by Human-hq and Yeast-hq). We gather mRNA

expression data for these organisms from GEO [38], and compute

a co-expression score for each interaction using the Pearson

correlation coefficient (PCC). We define hubs as all genes in the

top 10% in each interactome by the number of interactions. For

each hub, we calculate the average of the co-expression scores

(avPCC) computed over all the interactions in which this hub

participates. The size of each network, the number of interactions

with expression data, and the number of hubs are listed in Table 1.

In the main text, we focus on the human high confidence

interaction network Human-hq unless otherwise specified, but

results for all networks are given in the Text S1.

We use four measures to ascertain the functional, organizational

and dynamic properties of proteins in the network: clustering

coefficient, betweenness centrality, participation coefficient and

functional similarity. Clustering coefficient is the density of the

neighborhood of a protein in the network, and proteins with

higher clustering coefficient have interactions with proteins that

interact with each other. Betweenness centrality is a measure of the

fraction of shortest paths passing through a node in the network,

and nodes with higher betweenness are more globally central in

the network. Participation coefficient shows how well interactions

of a protein are distributed amongst clusters in the network, so that

proteins with low participation are mostly interacting with proteins

from the same cluster, whereas proteins with high participation

have their interactions spread among many clusters. Functional

similarity estimates to what extent a protein participates in the

same biological process as its neighbors in the network. We note

that three of these measures are purely topological and do not use

any information other than interaction data, whereas functional

similarity also uses Gene Ontology [39] annotations.

We classify hubs in the low range of avPCC as date and hubs in

the high range of avPCC as party. Despite the previously observed

differences between date and party hubs [6,24,29,30,32–34], the

choice of a threshold in the avPCC range between the two classes

of hubs has remained a topic of disagreement. As we have many

networks to consider, we choose a simple threshold criterion and

later demonstrate that this choice does not matter (see section

Hub characteristics). In particular, we define party hubs as the

one third of hubs with the largest avPCC, and call the remaining

two thirds of hubs date. Since it has been argued that the originally

Author Summary

A better understanding of protein interaction networks
would be a great aid in furthering our knowledge of the
molecular biology of the cell. Towards this end, large-scale
protein-protein physical interaction data have been deter-
mined for organisms across the evolutionary spectrum.
However, the resulting networks give a static view of
interactomes, and our knowledge about protein interac-
tions is rarely time or context specific. A previous
prominent but controversial attempt to characterize the
dynamic modularity of the interactome was based on
integrating physical interaction data with gene activity
measurements from transcript expression data. This
analysis distinguished between proteins that are co-
expressed with their interacting partners and those that
are not, and argued that the former are intramodular and
the latter are intermodular. By analyzing the interactomes
of five organisms, we largely confirm the biological
significance of this characterization through a variety of
statistical tests and computational experiments. Surpris-
ingly, however, we find that similar results can be obtained
using just network information without additionally
integrating expression data, suggesting that purely topo-
logical characteristics of interaction networks strongly
reflect certain aspects of the dynamics and modularity of
interactomes.
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observed differences between date and party hubs may be

attributed only to a small number of date hubs with extreme

network global centrality properties [37], we classify hubs with

many interactions or with high betweenness centrality into a

special group called extremal hubs (18 to 89 hubs depending on

the network) and exclude them from the analysis of date and party

hubs.

Properties of date and party hubs are significantly
distinct

We first analyze the differences between party and date hubs on

our seven networks (Fig. 1 and Fig. S1, Fig. S2, Fig. S3, Fig. S4,

Fig. S5 and Fig. S6). We confirm that date hubs tend to be more

globally central in the network and to have more diverse

intermodular participation, as reflected by their significantly

higher betweenness centrality and participation coefficient

(pv1e{23 and pv9e{27 respectively, in the high confidence

human network, Mann–Whitney U; Fig. 1B). Further, party hubs

tend to have denser neighborhoods consisting of genes with more

similar functions, as reflected by their significantly higher

clustering coefficient and functional similarity (pv4e{30 and

pv4e{28, respectively, in the high confidence human network,

Mann–Whitney U; Fig. 1B).

In addition to comparing the node-level features of date and

party hubs, we also compare the positioning of the set of date and

party hubs in the network with respect to each other in order to

better understand global network organizational features. For

either the set of date hubs or the set of party hubs, we measure

how well connected they are to each other by calculating the

density of the subnetwork induced by them, defined as the number

of interactions amongst the set of proteins, normalized by the

maximum possible number of such interactions. We also measure

how well spread the interactions of these hubs are in the whole

network by calculating the expansion of the set, defined as the

number of proteins in the network that are connected with any

hub in the set, but do not belong to the set, normalized by the size

of the set. We observe that party hubs have a strong tendency to

interact with other party hubs, and much less so with other

proteins, as reflected by their high density and low expansion in

the network as compared with sets of the same size consisting of

randomly selected hubs (Fig. 1C). On the contrary, date hubs have

significantly lower density and significantly higher expansion than

random sets with the same number of hubs, suggesting that they

are more sparsely distributed in the network than party hubs.

As a final test to compare the topological features of date and

party hubs, we compare the effect of node removal on network

structure for date and party hubs. For a set of hubs (either date or

party), we remove all of them from the network at once and

measure the change in three representative global network

characteristics: average path length, size of the largest connected

component, and global clustering coefficient. We compare the

effect of such a removal with the effect of a removal of random sets

of the same number of hubs. We observe that date hubs are more

central in the network, as their removal affects connectivity of the

network much more significantly than removal of random hubs, as

reflected by the average path length of the network and the size of

the largest connected component (Fig. 1D). At the same time,

removal of party hubs makes the network much less clustered than

the removal of random hubs, as reflected by the effect on the

global clustering coefficient.

The results of these analyses have qualitatively the same trends

across the five organisms (Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5

and Fig. S6), if extremal hubs are included in the analysis (Fig. S7),

or if all proteins with at least three interactions in the network are

considered hubs (see Section S1.2 in Text S1 and Fig. S8, Fig. S9

and Fig. S10). Taken together, our analysis over seven networks

suggests significant and consistent differences between proteins

characterized based on avPCC with respect to topological,

intermodular and functional features.

Hub characteristics capture functional and organizational
properties of the interactome

We next show that the avPCC measure is an interesting

biological measure independent of any threshold one could use to

define date and party hubs. That is, while there has been

significant previous controversy concerning how an avPCC

threshold should be chosen to categorize hubs into date and party

[35,36], we show here that the avPCC measure is itself correlated

with other characteristics of hubs in the network. In particular, we

compute the Spearman rank correlation (SRCC) between avPCC

and our topological and functional measures (Fig. 2, top row, and

Table S1). Across the organisms, we find consistent positive

correlations of avPCC with clustering (SRCCs ranging from 0:30
to 0:72 depending upon the network) and functional similarity

(SRCCs from 0:25 to 0:59) and negative correlations with

betweenness (SRCCs from {0:20 to {0:55, except Ecoli ) and

participation (SRCCs from {0:26 to {0:69). These correlations

are consistent with the original claims [29] that hubs in the high

avPCC range are more local and play more central roles within

modules and complexes, and thus have higher clustering

coefficients and higher average functional similarities with their

interacting partners, whereas hubs in the low avPCC range play

Table 1. Network sizes and the number of network hubs.

Network Num genes Num interactions
Num interactions with co-
expression score Hub threshold Num hubs (%)

Num hubs
with avPCC

Human-hq 4,750 13,102 11,781 12 481 (10.1%) 466

Yeast-hq 4,467 22,243 21,869 23 449 (10.1%) 445

Fly 8,218 36,569 36,525 23 865 (10.5%) 865

Athal 5,454 12,883 10,611 10 555 (10.2%) 506

Ecoli 3,115 17,788 17,697 23 319 (10.2%) 319

Human-all 10,229 80,651 66,102 39 1,033 (10.1%) 931

Yeast-all 5,641 59,930 59,658 49 570 (10.1%) 570

The number of vertices (genes) and edges (interactions) in each network, the number of interactions that were assigned a co-expression score, the degree threshold to
be chosen as a hub, the number of hubs obtained using this threshold, and the number of hubs that were assigned an average co-expression score.
doi:10.1371/journal.pcbi.1003243.t001
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more global roles in organizing other proteins’ functioning and

thus are more globally central in the PPI network (as evidenced by

higher betweenness centrality) and have more diverse participation

in interactions with different processes and modules (as evidenced

by higher participation coefficient).

Given the significant and consistent correlations between

avPCC and clustering, betweenness, participation and functional

similarity, we also compute the SRCCs amongst these measures.

As expected from our above analysis, these measures are also

correlated with each other in a consistent manner across the seven

networks (Fig. 2 and Tables S2, S3 and S4). Comparing the three

purely topological measures with each other, we find that

betweenness is positively correlated with participation, while both

are negatively correlated with clustering. We further note that

because the functional similarity measure aggregates information

from Gene Ontology, we can also use it as an independent means

of assessing whether the topological measures based purely on

interaction data reflect properties of protein functioning. We find

that functional similarity is significantly positively correlated with

clustering (SRCC from 0.26 to 0.71, except Ecoli ), while

negatively correlated with betweenness (SRCC from {0:09 to

{0:62, except Ecoli ) and participation (SRCC from {0:21 to

{0:65, except Ecoli ). This suggests that measures based purely

on the topology of the network can reflect interesting functional

properties of proteins.

As a control to confirm that the information coming from

protein-protein interactions is crucial, we randomize each network

in a degree-preserving manner [40], and recompute the node-level

topological and functional measures using the randomized

interactions. Correlations between these measures aggregated

over 20 random networks (Fig. 2) have substantially lower absolute

values than for real interaction networks and sometimes show a

completely opposite trend. We note, however, that these measures

can still have significant and meaningful correlations in random

networks. For example, a remarkably high correlation is found

between avPCC and functional similarity in random networks,

though it is still noticeably lower than in real networks. This is an

indication of the strong signal in expression data itself that does not

arise from physical interactions. Indeed, it is not surprising that

even for arbitrary pairs of genes, not necessarily physically

interacting, the more often they are expressed together, the more

likely that they are functionally related.

Potentially confounding factors in our correlation analysis

include the protein degree threshold used to identify hubs in the

networks, correlations of hub features with degree, bias from

extremal hubs, and study bias. To demonstrate that none of these

significantly affect our results, we also perform this analysis when

using different degree thresholds, when computing partial

correlations with correction for degree, when excluding extremal

hubs, and when focusing on high-throughput networks in yeast

and human (see Sections S1.2 and S1.3 in Text S1 and Fig. S11,

Fig. S12, Fig. S13, Fig. S14 and Fig. S15).

Distinct functions are enriched in hub classes
To determine whether party and date hubs (as well as hubs

partitioned into groups based on topological measures) tend to

Figure 1. Date and party hubs have distinct functional and topological properties. Date and party hub classification analysis in the human
high quality interaction network (Human-hq). (A) Number of hubs in each class. Party hubs in this network have avPCC§0:29; this threshold
corresponds to the top third of avPCC values for all hubs categorized as either party or date. (B) Betweenness, clustering coefficient, participation
coefficient and functional similarity for date and party hubs are significantly different; p-values are computed using the Mann–Whitney U. (C) Density
and expansion of date and party hubs are significantly different. The gray curves in each panel show the distributions for 1000 independent random
samples of the same number of hubs, and are used to compute empirical p-values. (D) Effect of hub removal is significantly different for party and
date when considering the average path distance, the size of the largest connected component, and the global clustering coefficient. The gray curves
show the distributions for 1000 independent random samples of the same number of hubs, and are used to compute empirical p-values. See
Materials and methods for more details.
doi:10.1371/journal.pcbi.1003243.g001
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participate in different biological functions, we performed GO

enrichment analysis on each set of hubs in Human-hq using the

most general terms in each of the three ontologies (i.e., the terms

that are immediate children of roots of the ontologies), and used all

annotated hubs to provide the background functional distribution.

We found that terms enriched for date and party hubs are very

different: date hubs are associated with global tasks such as

‘‘biological regulation’’ and ‘‘signaling,’’ while party hubs are

enriched in local and module- and complex-specific terms such as

‘‘macromolecular complex’’ and ‘‘metabolic process’’ (Fig. 3).

Interestingly, very similar terms are enriched when, instead of a

date-party classification based on avPCC, hubs are classified in a

2-to-1 proportion using clustering coefficient, betweenness cen-

trality, participation coefficient or functional similarity (Fig. 3).

That is, the same functional terms have similar enrichments when

hubs are classified based purely on topological measures,

suggesting that these topological properties can reflect the

functional roles of hubs in the interactome as well as avPCC

does. In general, we obtain similar results for the other networks

(see Section S1.4 in Text S1 and Fig. S16, Fig. S17, Fig. S18, Fig.

S19, Fig. S20 and Fig. S21).

Hubs that are more globally central in physical
interaction networks have more genetic interactions

We next consider the relationship between various properties of

hubs in physical interaction networks and their number of genetic

interactions. In the initial publication on date and party hubs [29],

it was observed that date hubs are involved in more genetic

interactions than party hubs, and it was proposed that their

phenotypic link to many proteins was due to their connecting

different biological processes to each other [29]. As yeast remains

the only organism with a sufficiently large number of known

genetic interactions, our analysis on genetic interactions is limited

to this organism. We note, however, that the current dataset

aggregated in BioGRID [41] is two orders of magnitude larger

than the one used previously by Han et al. [29].

We compute SRCCs between the number of genetic interac-

tions a hub has and its avPCC, its clustering coefficient, its

betweenness centrality, its participation coefficient and its func-

tional similarity in the physical interaction network. For both the

Yeast-all and Yeast-hq networks, avPCC is significantly

negatively correlated with genetic interaction degree (Fig. 4).

Further, we find that the number of genetic interactions of a hub is

Figure 2. Functional and topological characteristics of hubs are significantly correlated with each other in a consistent manner in
protein-protein interaction networks. Every colored bar represents a Spearman correlation between two characteristics of hubs in one of the
networks. Bars of significant correlations (absolute value w0:1, p-valuev0:05) have black edges. See Tables S1, S2, S3 and S4 for exact values. Smaller
uncolored bars show average correlations in 20 degree-preserving random networks (with error bars depicting standard deviations).
doi:10.1371/journal.pcbi.1003243.g002

Topology Reflects Dynamics and Modularity in PPI
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Figure 3. Different hub characteristics produce classifications of hubs with similar functional properties. Hubs are divided in a 2-to-1
proportion using either avPCC, clustering coefficient, betweenness centrality, participation coefficient or functional similarity scores in Human-hq.
Broad GO terms that are enriched at Bonferroni-corrected significance threshold 0.05 are shown with colors indicating the ontology of the term and
color intensity indicating the p-value of enrichment. Classifications of hubs based on different hub characteristics produce classes of hubs with similar
functional annotations.
doi:10.1371/journal.pcbi.1003243.g003

Figure 4. Characteristics of hubs in protein physical interaction networks are significantly correlated with their number of genetic
interactions. Every bar represents a Spearman correlation between a hub characteristic in one of the protein physical interaction networks for yeast
and degree in the yeast genetic interaction network. Bars of significant correlations (absolute value w0:1, p-valuev0:05) have black edges.
doi:10.1371/journal.pcbi.1003243.g004

Topology Reflects Dynamics and Modularity in PPI
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positively correlated with betweenness and participation in both

networks, while negatively correlated with clustering and func-

tional similarity. We also confirm that these correlations are

significant even when compared with those in random networks

(see Section S1.8 in Text S1 and Fig. S34). Finally, to directly

compare with the original study [29], we also verify that date hubs

are involved in many more genetic interactions than party hubs

(Fig. S22AB).

These observations are also largely confirmed when negative

and positive genetic interactions are considered separately (Fig.

S23), as well as when computing partial correlations corrected for

essentiality (see Section S1.5 in Text S1 , Fig. S22CD and Fig.

S24). As is the case when considering all genetic interactions

together, the trends are stronger in Yeast-all than in Yeast-hq.

Overall, we find that not only avPCC, but also other hub

characteristics, including those that are purely topological, are

significantly correlated with centrality in the genetic interaction

network. These results support the original observations that hubs

with the role of global connectors and organizers of the

interactome, as identified by avPCC or (as we show here) by

other topological measures, are related in their effect on phenotype

with many more genes than are local hubs from modules and

complexes.

Role of yeast two-hybrid and co-complex interactions
Physical protein-protein interactions obtained using different

methods can differ in their characteristics [6,42]. In particular, the

two high-throughput methods that account for the largest number

of interactions in our networks, yeast two-hybrid (Y2H) and

affinity purification followed by mass spectrometry, tend to detect

different types of interactions. The former are more likely to detect

direct, transient binary interactions between proteins whereas the

latter tend to detect more stable co-complex interactions that may

or may not correspond to direct interactions.

It was previously observed that for a fixed avPCC threshold in

the definition of date and party hubs, date hubs are much more

prevalent in Y2H networks, while party hubs are more prevalent

in co-complex networks [6]. Therefore it was suspected that the

observed distinction between date and party hubs may be

attributable to the fact that interaction networks are typically

compiled of interactions of both types, and this may artificially

imply the date/party distinction [37]. In order to rule out these

concerns regarding our observations about topological features of

hub proteins, we apply the same analysis to networks of only Y2H

or of only co-complex interactions.

We find that correlations between different hub characteristics

for networks formed by either only yeast two-hybrid or only co-

complex interactions are qualitatively the same as in networks with

interactions of all types combined (Fig. S25, as compared with

Fig. 2). The date/party distinction for hubs in these networks

separately is also qualitatively the same as in networks with

interactions of both types combined (Fig. S26, Fig. S27, Fig. S28,

Fig. S29, Fig. S30 and Fig. S31, compare with Fig. 1 and Fig. S1,

Fig. S2, Fig. S3, Fig. S4, Fig. S5 and Fig. S6). Thus, simple hub

characteristics consistently reflect principles of network structure

and functioning even when applied to networks comprised of

either Y2H or co-complex interactions.

Despite the consistency in correlations amongst hub features

between Y2H or co-complex networks with the network compiled

of interactions of both types, when analyzing just the latter

combined network, topological properties of hubs are consistently

and oppositely correlated with the number of Y2H interactions as

opposed to the number of co-complex interactions. The avPCC

measure is negatively correlated with the number of Y2H

interactions, while positively correlated with the number of co-

complex interactions (Fig. 5). Accordingly, date hubs participate in

more Y2H interactions, while party hubs participate in more co-

complex interactions (p-value from 5e{08 to 3e{24, Mann–

Whitney U; Fig. S32). Betweenness and participation are positively

correlated with the number of Y2H interactions, while negatively

correlated with the number of co-complex interactions, which

suggests that these two measurements are indeed capturing the

centrality of hubs and their tendency to interact one-to-one with

other proteins. Clustering and functional similarity are negatively

correlated with the number of Y2H interactions, while positively

correlated with the number of co-complex interactions, which

suggests that these two measurements are capturing the tendency

of hubs to participate in complexes and functionally homogeneous

modules. Thus, we find that more globally central hubs (as

specified by either betweenness or participation) tend to have more

yeast two-hybrid interactions whereas more module-specific hubs

(as specified by either avPCC, clustering coefficient or functional

similarity) tend to have more co-complex interactions.

Hubs involved in modules and clusters are more likely to
be essential

In the initial study [29], it was observed that in yeast, party hubs

are more likely to be essential than date hubs (though the observed

difference was not significant). We revisit this question with our

newer and larger data set.

We compute the SRCC between essentiality represented as an

indicator vector (i.e., 1 if a gene is essential and 0 otherwise) and

other characteristics of hubs in the physical interaction network.

For both the Yeast-all and Yeast-hq networks, avPCC is

significantly positively correlated with essentiality (Fig. 6). To

directly compare with the original study [29], we also compare

date and party hubs and find a significantly larger fraction of

essential genes in the set of party hubs than in the set of date hubs,

as determined by the hypergeometric test (Fig. S33). We further

show that the correlation of avPCC and essentiality is significantly

high even when compared with that found in random networks

(see Section S1.8 in Text S1 and Fig. S35). We also find that

essentiality is positively correlated with clustering and functional

similarity, while negatively correlated with betweenness and

participation (though this correlation is not significant for

betweenness in Yeast-all). This is in agreement with recent

evidence of the tight relationship of a protein’s essentiality with

modularity and its involvement in essential complexes [22,23], as

hubs with high avPCC, clustering, or functional similarity, and

correspondingly low betweenness and participation, are likely to

play key roles in modules and complexes.

Hub roles in the interactome are evolutionary conserved
In order to compare hub characteristics for similar genes from

different organisms, we obtain sets of orthologous proteins from P-

POD [43] for all organisms under consideration. As genes from

the E. coli network have only a few orthologs in P-POD in the

other networks, we focus this analysis on the four eukaryotic

species. For each pair of networks of different organisms, we

calculate the SRCCs of hub characteristics (avPCC, clustering,

betweenness, participation and functional similarity, computed as

described above independently for each network) over all pairs of

orthologous hubs. For Human-all and Yeast-all we observe

highly significant positive correlations which range from 0.38 for

functional similarity to 0.76 for participation (Table 2), and for

Human-hq and Yeast-hq they range from 0.23 for avPCC to

0.62 for clustering (Table S5). We note that some proteins may be

involved in many orthologous pairs and therefore we also validate

Topology Reflects Dynamics and Modularity in PPI
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the significance of the observed correlations by randomly

permuting hubs, and find that these results remain significant

(see Materials and methods for more details). These features

are largely consistently positively correlated when comparing

ortholog pairs between different pairs of networks (Tables S6,

S7, S8, S9, S10), though at varying levels of statistical

significance. Further, we observe that purely topological features

such as clustering coefficient and betweenness centrality are

much more consistently conserved between pairs of networks

than avPCC (Tables 2, S5, S6, S7 and S8), which is additional

evidence that these topological features can reflect hub roles in

the interactome.

One may suspect that the observed high correlation of hub

features between organisms may be explained by conservation of

modules that correspond to higher values of avPCC, clustering

and functional similarity and to lower values of betweenness and

participation. To exclude this possibility, for a pair of organisms,

we first determine in each the hubs with the highest and lowest

third of scores, according to any given hub measure. Next, we

determine how many ortholog pairs are found between each of the

Figure 5. Hubs with different roles in interactomes are involved in interactions of different types. For hubs and their characteristics
determined from the full networks Human-all, Yeast-all and Athal, we measured the Spearman correlation between hub characteristics and the
number of interactions of the type yeast two-hybrid or co-complex. Bars of significant correlations (absolute value w0:1, p-valuev0:05) have black
edges. Hubs with higher avPCC, clustering coefficient and functional similarity tend to have more co-complex interactions, while hubs with higher
betweenness and participation coefficient tend to have more yeast two-hybrid interactions.
doi:10.1371/journal.pcbi.1003243.g005

Figure 6. Hub characteristics in yeast protein physical interaction networks are correlated with protein essentiality. Each bar
represents a Spearman correlation between a hub characteristic and hub essentiality in one of the yeast networks. Bars of significant correlations
(absolute value w0:1, p-valuev0:05) have black edges.
doi:10.1371/journal.pcbi.1003243.g006
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top and bottom groups in both organisms. We compare these

numbers with the same values expected if these top and bottom

sets of hubs were selected at random, rather than according to the

hub score. We expect more ortholog pairs between the top thirds

as well as between bottom thirds, and fewer orthologs between the

top and bottom thirds. Indeed, this is what is observed for our hub

measures (see, for example, avPCC when comparing the Yeast-
all and Human-hq networks in Fig. 7A and participation for

these networks in Fig. 7B).

Discussion

We have confirmed in protein interaction networks across a

range of organisms that if hubs are partitioned into two classes

according to their tendency to be co-expressed with their

interacting partners, they exhibit significantly different properties

and roles in the interactome. In one class, hubs tend to have higher

average co-expression with their interacting partners, higher

clustering coefficients and higher functional similarities, but lower

betweenness centralities and participation coefficients. These hubs

are more often interacting with each other, and are enriched with

co-complex interactions. Simulated removal of these hubs from

the network does not greatly affect the connectivity of the network.

These properties suggest that such hubs may act locally inside

functional modules and protein complexes. In another class, hubs

tend to have lower average co-expression, clustering, and

functional similarity, but higher betweenness and participation.

These hubs more often participate in genetic interactions, and are

more often detected in yeast two-hybrid interactions, which are

presumably enriched in binary transient interactions. These hubs

tend to interact with each other less, and with other proteins more.

After these hubs are removed, the network becomes more

disconnected and clustered. These properties suggest that such

hubs tend to be global connectors and coordinators of different

modules in the interactome.

Initially, it was proposed that the distribution of the hubs’

average co-expressions with their neighbors was bimodal, and it

was argued that this naturally implied a categorization of all hubs

into two classes with hypothetically different roles. Furthermore,

Han et al. [29] proposed a view of the interactome with mostly

non-intersecting independent modules, and certain proteins

outside of these modules that connect and coordinate their

functioning. This model, as well as the existence of the two classes

of hubs with correspondingly different roles, has been the subject

of some controversy. We argue that even though we believe the

two classes of proteins in the interactome can be distinguished

from each other and their roles can be recognized as different, it is

not necessarily the case that all proteins or even just all hubs can

be classified into one of the classes. Rather, the network is almost

certainly more complex, with highly overlapping modules,

multifunctional proteins, and proteins of mixed and not easily

detectable roles that depend upon conditions and time. A better

understanding of the structure and functioning of the interactome

will require large-scale annotation of interactions and interacting

proteins with information about concentrations and the strength,

condition and timing of when, where and how these interactions

occur. These annotations are currently not available at a large

scale, but may be obtained experimentally in the future, or by

Table 2. Spearman correlation for characteristics of
orthologous hubs in Yeast-all and Human-all.

Hub characteristic r p-value Empirical p-value

avPCC 0.55 3e{36 v0:001

clustering 0.72 3e{70 v0:001

betweenness 0.44 1e{22 v0:001

participation 0.76 1e{82 v0:001

func. sim 0.38 4e{16 v0:001

Five hub characteristics for all 437 orthologous pairs between 291 hubs in
Yeast-all and 299 hubs in Human-all are significantly positively correlated, as
measured by Spearman’s rho (r) and the correspondingly determined p-values
and empirical p-values for 1000 random permutations of hubs. See main text
and Materials and methods for details.
doi:10.1371/journal.pcbi.1003243.t002

Figure 7. Characteristics of hubs are conserved across networks. The top (respectively, bottom) third of hubs in each of Yeast-all and
Human-all, as determined by (A) avPCC and (B) participation coefficient, are enriched in the number of orthologs between them. The number of
orthologs between each of the groups is given, along with a z-score and p-value derived empirically from random samples of proteins for each
group. Red bars indicate orthologous relationships between proteins in the top third of hubs, blue bars indicate orthologous relationships between
proteins in bottom third of hubs, and gray bars indicate orthologous relationships between proteins that are in opposing groups in the two
organisms.
doi:10.1371/journal.pcbi.1003243.g007

Topology Reflects Dynamics and Modularity in PPI

PLOS Computational Biology | www.ploscompbiol.org 9 October 2013 | Volume 9 | Issue 10 | e1003243



developing new methods for analysis of existing data. With

uncertainty about the exact role of each particular protein in the

interactome, measuring and analyzing their properties on a

continuous scale may be more appropriate than trying to extract

firm classes.

A significant amount of computational research has been

devoted to uncovering the dynamics of protein interactions via

integration with other types of data [18,44–47]. Currently, the

most common approach to glean information about the dynamics

of hubs and their interactions is by integrating interaction data

with gene expression data, as is done here and previously using the

measure of a protein’s average co-expression with its interacting

partners. However, we have shown that very similar information is

reflected in the interaction data itself. Even though it is highly

unlikely that just topological network features can describe all of

the structure and dynamics of interactomes, analysis of topological

characteristics in networks may be of great help in furthering our

understanding of network dynamics.

As more large-scale protein interaction networks have become

available, certain of their aspects and properties have been shown

to be conserved across interactomes of different organisms [48–

52]. Such conservation is strong evidence that a network feature

reflects an important aspect of interactomes. We have shown that

a protein’s average co-expression over neighbors in its PPI

network is conserved for orthologous hubs across different

organisms, and have further confirmed that it is a biologically

meaningful measure for understanding hub roles. At the same

time, we have shown that hub characteristics that depend purely

on network topology are conserved at least as well as average

co-expression.

Following previous work, in our analysis we have focused almost

exclusively on hubs, a small fraction of proteins within inter-

actomes. However, we have also demonstrated, by reducing the

number of interactions required to call a protein a hub, that our

observations hold when we consider many more proteins in the

network, so it may be possible to classify not just hubs based on

topological features or co-expression properties, but also proteins

in general. Moreover, we have shown that our analysis is robust to

noise in interaction data, as the trends we report are consistent not

only across networks of lower coverage where interactions are

additionally selected for high quality, but also across larger

networks without additional quality filtering that are likely to

contain more noise but also have higher coverage.

We have shown that topological features of proteins in the

network capture functional and structural properties of networks.

Therefore, the distribution of these features also, to some extent,

characterizes the whole interactome. In the future, depending

upon the application, it may be desirable to take these features into

account when building and analyzing models for protein

interaction networks, and in particular, within algorithms that

are used for generating random networks in order to compare

them with real data. Existing approaches for randomizing protein

interaction networks have preserved local properties such as

degree and local clustering coefficient, small subgraphs and

schemas, as well as some evolutionary constraints [52–57]. In

addition to these features, in the future, randomization algorithms

may try to also preserve measures such as betweenness centrality

and participation coefficient, as we have demonstrated that these

features capture additional information about network structure.

In sum, our observations provide a better understanding of the

dynamic interactome of the cell. As more specific, high-quality and

high-coverage protein-protein interaction data become available,

we believe our approaches to analyze these data can reveal further

details about the structure, function and evolution of interactomes.

Materials and Methods

Interaction networks
Seven interaction networks for five organisms are considered in

our analysis. We briefly describe the networks below; further

details can be found in Section S2.2 in the Text S1. In all

networks, self-loops and duplicate interactions are deleted. The

size of each network is shown in Table 1.

S. cerevisiae. The network Yeast-all consists of all yeast

protein physical interactions from BioGRID [41] version 3.1.78.

The high quality network Yeast-hq consists of all binary and co-

complex interactions from HINT [58]. Yeast genetic interactions

are obtained from BioGRID version 3.1.78 (123707 interactions).

H. sapiens. We use two human protein-protein physical

interaction networks, both compiled by [59]. The first, Human-
all, is their comprehensive network aggregated from numerous

sources, and the second is their high quality subnetwork

Human-hq.

D. melanogaster. Fly combines all interactions in DroID [60]

version 2011_02 with those from DPiM [8].

A. thaliana. Athal consists of protein-protein interactions

obtained from IntAct [61], BioGRID, and from the supporting

material of [9].

E. coli. Ecoli consists of protein-protein physical interactions

extracted via the PSICQUIC View application [62].

Network topology analysis
We briefly describe the topological measures that we utilize in

our study.

The degree of a vertex is the number of interactions the

corresponding protein has. In each network, we consider hubs to

be proteins in the top 10% by degree, where the precise degree

threshold to be called a hub is chosen such that at least 10% of

vertices are hubs. These thresholds and the number of hubs for

each network are shown in Table 1.

The betweenness centrality of a vertex v in a network is the

number of shortest paths between all pairs of vertices in the

network that pass through v, with the shortest paths between two

genes s and t weighed inversely to the total number of distinct

shortest paths between s and t.
The clustering coefficient of a node is defined as the ratio of

the number of triangles containing that node to the number of

triples centered on it; i.e., for a protein, this measures the number

of interactions among its interactors, normalized by the maximum

number of possible interactions.

The participation coefficient [37,63] of a vertex with

respect to a set of clusters in a network is defined as

P~1{
P

i

ki

k

� �2

, where the summation is over all clusters, k is

the degree of the vertex, and ki is the number of edges going from

the vertex to vertices in cluster i. Note that P~0 if all edges from a

vertex go to a single cluster, and P is closer to 1 if edges from the

vertex are more uniformly distributed over clusters. To find

clusters in the network, we used the SPICi clustering algorithm

[64] with parameters optimized with a simple exhaustive search

procedure to approximately maximize Newman’s modularity

measure [65]. See Section S2.4 in Text S1 for details.

The density of a set of vertices S is the ratio of the actual

number of edges between vertices in S to the maximum possible

such number DSD: (DSD{1)=2. The neighborhood of a set of vertices

S is the set of all vertices that are connected to some vertex from S
but are not themselves members of S. The expansion of a set of

vertices S is the ratio DN D=DSD, where N is the neighborhood of S.

When measuring the density or expansion of a class of hubs, we
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compare it with the density or expansion of a random subset of the

same number of background hubs as in the class in question. We

consider 1000 independent samples, and report the empirical p-

value of the actual value as compared to the distribution of

random values.

The average path length for a network is measured as the

average over all pairs of vertices of the lengths of the shortest paths

between them. (For a disconnected network, only pairs of vertices

connected by a path are considered.) The relative size of the
giant component is calculated as the ratio of the size of the

largest connected component in the network to the number of

vertices in the network. The global clustering coefficient of a

network measures the tendency of network vertices to cluster

together. It is defined as thrice the number of triangles divided by

the number of connected triples of vertices in the network.

In a hub removal experiment for a class of hubs, we remove

all vertices of the class with their interactions from the network at

once and measure the fold change of certain characteristics of the

remaining network as compared with the initial network (e.g., if

the average path length increased 1:23 times, then the fold change

is 1:23). To compute an empirical p-value of this fold change

value, we compare it with the distribution of the same values

obtained after 1000 independent removals of random subsets of

the same number of background hubs. We use the average path

length, the size of the giant component, and the global clustering

coefficient as global characteristics of network structure. By

removing all hubs at once and comparing computed values with

removals of random subsets of the same size, our hub removal

experiment does not depend on the order in which hubs are

removed or the size of the set of hubs considered, two issues which

were raised previously [35,36]. The results of these experiments

can be compared for different classes of hubs, as in each case we

compare the effect for a class of hubs relative to random subsets of

the same size.

All topological measures are computed based on the python

interface to the igraph library, version 0.5.4 (http://igraph.

sourceforge.net/). We utilize degree-preserving network random-

izations, as implemented in the igraph.Graph.Degree_Sequence( )

method with the ‘‘vl’’ option [40].

Expression
Expression compendia for each organism consist of datasets

collected from online databases and papers, as described in detail

in Section S2.3 in the Text S1 , and for each organism cover a

wide range of conditions and/or tissue and cell types (where

applicable). Each dataset is processed independently as follows: all

replicates are merged (gene expression values averaged over

replicates of the same experiment); genes with less than 50%

known values are removed; the log2-transformation is applied to

all values if absolute signal values are given; for each matrix

column corresponding to a single genome-wide experiment, the

values of the column are transformed to z-scores.

For each organism, for each interacting pair of genes, we

compute their co-expression via the Pearson correlation coefficient

(PCC) of their expression profiles as follows. For genes with

incomplete expression profiles within a dataset, only dimensions

where values for both genes in the pair are known are used when

computing the PCC of this pair. If the expression compendium for

an organism consists of several datasets, the PCC is computed for

each dataset independently, and then these PCC values are

averaged with weights proportional to the number of expression

datapoints that the dataset contributed to the compendium (in case

of incomplete data, this is only over datasets where the PCC could

be successfully computed), to obtain a final co-expression

interaction score.

Some proteins in the networks are not included in any

expression datasets. These proteins are not used to compute

PCCs and avPCCs (see below), but may still contribute to degree

or other topological properties of proteins. The number of

interactions in the networks for which co-expression values are

computed is shown in Table 1.

Hub scores and classifications
For each hub, the average co-expression score (avPCC) is

computed as the average of its co-expression interaction scores

[29]. More precisely, the avPCC of a hub is the sum of all defined

co-expression scores for interactions of the hub divided by hub

degree (thus unknown edge scores are effectively assumed to be 0).

Hubs are scored with avPCC only if they have at least 3

interactions with defined co-expression score.

Extremal hubs are defined as hubs in the top 5% by either

degree or betweenness centrality amongst all hubs. For most

networks, these two subsets of hubs are highly intersecting, so the

union contains much less than 10% of all hubs. These hubs are

excluded from the classification of hubs into date and party, and

the corresponding analysis of this classification, but may still

contribute to properties of other genes, particularly other hubs.

Further, the background set of hubs, from which random sets of

hubs are chosen to compute empirical p-values of several

properties (as described above), does not include extremal hubs.

Note, however, that extremal hubs are not excluded when doing

correlation analysis of hub characteristics.

Party hubs are defined as the top one third by avPCC amongst

all non-extremal hubs, and the remaining non-extremal hubs are

defined as date hubs.

Gene ontology analysis
For our functional analysis, we use Gene Ontology (GO) [39]

terms and gene association data for each organism, not including

associations with evidence codes IEA, RCA, IPI, ND or the

qualifier NOT (downloaded from http://www.geneontology.org/

on July 25, 2011). The functional similarity of a pair of genes

is computed as described in [37]. First, the information content of

a term t is defined as s(t)~{ log DtD
DGD, where DtD is the number of

genes annotated with the term, and DGD is the total number of

genes in the organism annotated with at least one term. Then if

T(g) and T(h) are the sets of terms annotating genes g and h
respectively, functional similarity is computed as f (g,h)~P

t[T(g)\T(h) s(t)P
t[T(g)|T(h) s(t)

. For functional similarity, all GO Biological

process terms of depth §2 annotating at least 3 and at most 1000

genes are considered. The functional similarity of a vertex in a

network is the average of functional similarity of this gene with all

its interacting partners; proteins not annotated with one of the

terms under consideration lead to functional similarities of 0.

We perform GO annotation enrichment test using the code of

the project goatools (https://github.com/tanghaibao/goatools).

We apply it to groups of hubs in the top and bottom one third or

two thirds by avPCC, clustering, betweenness, participation and

functional similarity in each network. For this analysis, we use

broad functional terms that are direct children of roots of all three

ontologies: biological process, 28 terms; cellular component, 13

terms; and molecular function, 20 terms. We use the set of all

annotated hubs as the background population, and report terms

with a Bonferroni-corrected p-value of less than 0.05. For each

network, we test enrichment for each ontology (e.g., Biological
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process ontology) independently, and restrict the analysis only to

the hub proteins that have at least some annotation with terms

other than the root (e.g., Biological process) in this ontology.

Essential genes
The 1222 essential genes for S. cerevisiae are obtained from the

Saccharomyces Genome Deletion Project webpage (file http://

www-sequence.stanford.edu/group/yeast_deletion_project/

Essential_ORFs.txt).

Orthologs
We use protein ortholog information from version 4 of the

Princeton Protein Orthology Database (P-POD) [43] (ftp://gen-

ftp.princeton.edu/ppod/). We consider two proteins in different

networks to be orthologous if they are categorized in the same

family by P-POD using either OrthoMCL or MultiParanoid.

For each pair of networks for two different organisms, we

consider each pair of hubs (H1,H2) where H1 and H2 are non-

extremal hubs in the networks of organisms 1 and 2, respectively,

that are reported to be orthologous. A hub can appear in several

pairs if it has more than one ortholog in another species. The

Spearman correlation coefficient is computed over hub pairs for

various network characteristics (avPCC, clustering coefficient, etc.).

Since a hub may contribute to several pairs of orthologs, in

addition to using the standard computation of the p-value for the

Spearman correlation coefficient, we also calculate an empirical p-

value in the following way: the actual Spearman’s rho is compared

with the distribution of Spearman’s rho values calculated in

exactly the same manner as above, but for the characteristic (say,

avPCC) among hubs randomly permuted in each of the two

networks (as opposed to permuting vector components that

contain repetitions). We report the empirical p-value of the actual

correlation with respect to the distribution of correlations from

1000 instances of randomized data.

We test if the low range of a hub feature (say, avPCC) is

evolutionary conserved as much as the high range. For two

networks of different organisms, we extract hubs in the top one third

and bottom one third as ranked by the feature computed in each

network. We calculate for each pair of hub groups (top third from

the first organism vs. top third from the second organism, top third

from the first organism vs. bottom third from the second organism,

etc.) how many ortholog pairs are observed between them. Then we

compare this number with the number calculated in exactly the

same manner, but for 1000 random samples of the same number of

hubs in each network, and report the corresponding z-score and

empirical p-value of the actual number of orthologs compared with

the distribution of the numbers for random data.

Supporting Information

Figure S1 Date and party hub classification analysis in
yeast high quality network (Yeast-hq). (A) Number of hubs

in each class. Party hubs in this network have avPCC§0:14; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S2 Date and party hub classification analysis in
fly network of all physical interactions (Fly). (A) Number

of hubs in each class. Party hubs in this network have

avPCC§0:12; this threshold corresponds to the top third of

avPCC values for all hubs categorized as either party or date. (B)

Betweenness, clustering coefficient, participation coefficient and

functional similarity for date and party hubs. (C) Density and

expansion of date and party hubs. (D) Effect of hub removal for

party and date when considering the average path distance, the

size of the largest connected component, and the global clustering

coefficient. See caption of Fig. 1 in the main text for details.

(TIF)

Figure S3 Date and party hub classification analysis in
Arabidopsis network (Athal). (A) Number of hubs in each

class. Party hubs in this network have avPCC§0:15; this threshold

corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S4 Date and party hub classification analysis in
E. coli network ( Ecoli ). (A) Number of hubs in each class.

Party hubs in this network have avPCC§0:13; this threshold

corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S5 Date and party hub classification analysis in
human network of all physical interactions (Human-all).
(A) Number of hubs in each class. Party hubs in this network have

avPCC§0:24; this threshold corresponds to the top third of

avPCC values for all hubs categorized as either party or date. (B)

Betweenness, clustering coefficient, participation coefficient and

functional similarity for date and party hubs. (C) Density and

expansion of date and party hubs. (D) Effect of hub removal for

party and date when considering the average path distance, the

size of the largest connected component, and the global clustering

coefficient. See caption of Fig. 1 in the main text for details.

(TIF)

Figure S6 Date and party hub classification analysis in
yeast network of all physical interactions (Yeast-all). (A)

Number of hubs in each class. Party hubs in this network have

avPCC§0:21; this threshold corresponds to the top third of

avPCC values for all hubs categorized as either party or date. (B)

Betweenness, clustering coefficient, participation coefficient and

functional similarity for date and party hubs. (C) Density and

expansion of date and party hubs. (D) Effect of hub removal for

party and date when considering the average path distance, the

size of the largest connected component, and the global clustering

coefficient. See caption of Fig. 1 in the main text for details.

(TIF)

Figure S7 Date and party hub classification analysis in
human high quality network (Human-hq) with extremal
hubs included. (A) Number of hubs in each class. Party hubs in

this network have avPCC§0:30; this threshold corresponds to the

Topology Reflects Dynamics and Modularity in PPI
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top third of avPCC values for all hubs categorized as either party

or date. (B) Betweenness, clustering coefficient, participation

coefficient and functional similarity for date and party hubs. (C)

Density and expansion of date and party hubs. (D) Effect of hub

removal for party and date when considering the average path

distance, the size of the largest connected component, and the

global clustering coefficient. See caption of Fig. 1 in the main text

for details.

(TIF)

Figure S8 Date and party hub classification analysis in
human network of all physical interactions ( Human-all
), with all genes of degree §3 as hubs. (A) Number of hubs

in each class. Party hubs in this network have avPCC§0:12; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S9 Date and party hub classification analysis in
yeast network of all physical interactions ( Yeast-all ),
with all genes of degree §3 as hubs. (A) Number of hubs in

each class. Party hubs in this network have avPCC§0:08; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S10 Date and party hub classification analysis in
fly network of all physical interactions ( Fly ), with all
genes of degree §3 as hubs. (A) Number of hubs in each

class. Party hubs in this network have avPCC§0:12; this threshold

corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S11 Spearman correlation of hub characteristics
in interaction networks, with all genes of degree §3 as
hubs. Every bar represents a Spearman correlation between two

characteristics of hubs in one of the networks. Bars of significant

correlations (absolute value w0:1, p-valuev0:05) have black

edges. Smaller uncolored bars show average correlation (with

error bars depicting the standard deviations) in 20 random

networks on the same genes with the same number of interactions

for each.

(TIF)

Figure S12 Spearman correlation of hub characteristics
in interaction networks, with all genes of degree §3 as
hubs and with correction for degree. Every bar represents a

partial Spearman correlation corrected for degree between two

characteristics of hubs in one of the networks. Bars of significant

correlations (absolute value w0:1, p-valuev0:05) have black

edges. Smaller uncolored bars show average correlation (with

error bars depicting the standard deviations) in 20 random

networks on the same genes with the same number of interactions

for each.

(TIF)

Figure S13 Correlation with degree is not a confounding
factor in the correlation analysis of hub characteristics.
(A) Every bar represents a Spearman correlation between a hub

characteristic and degree (the number of interactions) for hubs in

one of the networks. (B) Every bar represents a partial Spearman

correlation corrected for degree between two characteristics of

hubs in one of the networks. Bars of significant correlations

(absolute value w0:1, p-valuev0:05) have black edges. Smaller

uncolored bars show average correlation (with error bars for

standard deviations) in 20 random networks on the same genes

with the same number of interactions for each.

(TIF)

Figure S14 Hubs with extremal properties do not bias
the correlation analysis of hub characteristics. Every bar

represents a Spearman correlation between two characteristics of

non-extremal hubs in one of the networks. Bars of significant

correlations (absolute value w0:1, p-valuev0:05) have black

edges. Smaller uncolored bars show average correlation (with

error bars for standard deviations) in 20 random networks on the

same genes with the same number of interactions for each.

(TIF)

Figure S15 Spearman correlation of hub characteristics
in high-throughput interaction networks for human and
yeast. Every bar represents a Spearman correlation between two

characteristics of hubs in one of the networks. Bars of significant

correlations (absolute value w0:1, p-valuev0:05) have black

edges. Smaller uncolored bars show average correlation (with

error bars for standard deviations) in 20 random networks on the

same genes with the same number of interactions for each.

(TIF)

Figure S16 GO annotation enrichment analysis of hubs
in Yeast-hq. GO annotation enrichment analysis of hubs divided

in a 2-to-1 proportion by avPCC, clustering, betweenness,

participation and functional similarity scores in Yeast-hq. See

Fig. 3 in the main text for details.

(TIF)

Figure S17 GO annotation enrichment analysis of hubs
in Human-all. GO annotation enrichment analysis of hubs

divided in a 2-to-1 proportion by avPCC, clustering, betweenness,

participation and functional similarity scores in Human-all. See

Fig. 3 in the main text for details.

(TIF)

Figure S18 GO annotation enrichment analysis of hubs
in Yeast-all. GO annotation enrichment analysis of hubs divided

in a 2-to-1 proportion by avPCC, clustering, betweenness,

participation and functional similarity scores in Yeast-all. See

Fig. 3 in the main text for details.

(TIF)

Figure S19 GO annotation enrichment analysis of hubs
in Fly. GO annotation enrichment analysis of hubs divided in a 2-

to-1 proportion by avPCC, clustering, betweenness, participation

and functional similarity scores in Fly. See Fig. 3 in the main text

for details.

(TIF)
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Figure S20 GO annotation enrichment analysis of hubs
in Athal. GO annotation enrichment analysis of hubs divided in a

2-to-1 proportion by avPCC, clustering, betweenness, participa-

tion and functional similarity scores in Athal. See Fig. 3 in the

main text for details.

(TIF)

Figure S21 GO annotation enrichment analysis of hubs
in Ecoli. GO annotation enrichment analysis of hubs divided in a

2-to-1 proportion by avPCC, clustering, betweenness, participa-

tion and functional similarity scores in Ecoli. See Fig. 3 in the

main text for details.

(TIF)

Figure S22 Genetic interactions for date and party hubs
in yeast. Date hubs participate in significantly larger number of

genetic interactions than party hubs, when date and party hubs are

defined from yeast networks (A) Yeast-hq (B) Yeast-all (Mann–

Whitney U). Even when all essential genes are removed from

consideration, the same trend is observed for both networks (C)

Yeast-hq and (D) Yeast-all.

(TIF)

Figure S23 Spearman correlation of hub characteristics
with the number of negative and positive genetic
interactions. (A) Every bar represents a Spearman correlation

between a hub characteristic and the number of negative genetic

interactions for hubs in one of the physical interaction networks for

yeast. (B) Every bar represents a Spearman correlation between a

hub characteristic and the number of positive genetic interactions

for hubs in one of the physical interaction networks for yeast. Bars

of significant correlations (absolute value w0:1, p-valuev0:05)

have black edges.

(TIF)

Figure S24 Essentiality is not a confounding factor in the
correlation analysis of genetic degree with hub charac-
teristics in yeast physical interaction networks. (A) Every

bar represents a Spearman correlation between essentiality (1 if

essential, 0 otherwise) and the number of genetic interactions for

hubs in one of the physical interaction networks for yeast. (B) Every

bar represents a partial Spearman correlation between a hub

characteristic and the number of genetic interactions corrected for

essentiality for hubs in one of the physical interaction networks for

yeast. Bars of significant correlations (absolute value w0:1, p-

valuev0:05) have black edges.

(TIF)

Figure S25 Spearman correlation of hub characteristics
in yeast two-hybrid and co-complex interaction net-
works. Every bar represents a Spearman correlation between two

characteristics of hubs in one of the networks. Bars of significant

correlations (absolute value w0:1, p-valuev0:05) have black

edges. Smaller uncolored bars show average correlation (with

error bars for standard deviations) in 20 random networks on the

same genes with the same number of interactions for each.

(TIF)

Figure S26 Date and party hub classification analysis in
human network of all known interactions from yeast
two-hybrid experiments (Human-all-y2h). (A) Number of

hubs in each class. Party hubs in this network have avPCC§0:08;

this threshold corresponds to the top third of avPCC values for all

hubs categorized as either party or date. (B) Betweenness,

clustering coefficient, participation coefficient and functional

similarity for date and party hubs. (C) Density and expansion of

date and party hubs. (D) Effect of hub removal for party and date

when considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S27 Date and party hub classification analysis in
human network of all known interactions derived from
complexes (Human-all-cocompl). (A) Number of hubs in

each class. Party hubs in this network have avPCC§0:30; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S28 Date and party hub classification analysis in
yeast network of all known interactions from yeast two-
hybrid experiments (Yeast-all-y2h). (A) Number of hubs in

each class. Party hubs in this network have avPCC§0:08; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S29 Date and party hub classification analysis in
the yeast network of all known interactions derived from
complexes (Yeast-all-cocompl). (A) Number of hubs in each

class. Party hubs in this network have avPCC§0:26; this threshold

corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering

coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S30 Date and party hub classification analysis in
the Arabidopsis network of all known interactions from
yeast two-hybrid experiments (Athal-y2h). (A) Number of

hubs in each class. Party hubs in this network have avPCC§0:12;

this threshold corresponds to the top third of avPCC values for all

hubs categorized as either party or date. (B) Betweenness,

clustering coefficient, participation coefficient and functional

similarity for date and party hubs. (C) Density and expansion of

date and party hubs. (D) Effect of hub removal for party and date

when considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S31 Date and party hub classification analysis in
Arabidopsis network of all known interactions derived
from complexes (Athal-cocompl). (A) Number of hubs in

each class. Party hubs in this network have avPCC§0:30; this

threshold corresponds to the top third of avPCC values for all hubs

categorized as either party or date. (B) Betweenness, clustering
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coefficient, participation coefficient and functional similarity for

date and party hubs. (C) Density and expansion of date and party

hubs. (D) Effect of hub removal for party and date when

considering the average path distance, the size of the largest

connected component, and the global clustering coefficient. See

caption of Fig. 1 in the main text for details.

(TIF)

Figure S32 Yeast two-hybrid and co-complex interac-
tions of date and party hubs. Date hubs have significantly

many more binary (yeast two-hybrid, y2h) interactions, while party

hubs participate in significantly larger number of interactions

derived from complexes (co-complex, cocompl) in networks (A)

Human-all (B) Yeast-all (C) Athal (Mann–Whitney U).

(TIF)

Figure S33 Party hubs are more likely to be essential
than date hubs. Fraction of date and party hubs that are

essential in (A) Yeast-hq (B) Yeast-all. Party hubs are

significantly enriched with essential genes (hypergeometric test).

Spearman correlation (with p-value) of essentiality indicator vector

(1 if essential, 0 otherwise) and avPCC shown on bottom is

significantly positive.

(TIF)

Figure S34 avPCC-rand is not a confounding factor in the
correlation analysis of hub characteristics and genetic
degree in yeast physical interaction networks. (A) Every bar

represents a Spearman correlation between a hub characteristic and

the number of genetic interactions for hubs in one of the yeast

networks. Bars of significant correlations (absolute value w0:1, p-

valuev0:05) have black edges. (B) Every bar represents a partial

Spearman correlation between a hub characteristic and the number

of genetic interactions corrected for avPCC-rand for hubs in one of

the yeast networks. Smaller uncolored bars show average

correlation (with error bars for standard deviations) in 100 random

networks on the same genes with the same number of interactions

for each. Random networks used for the plot are different from

those used for the calculation of avPCC-rand.

(TIF)

Figure S35 avPCC-rand is not a confounding factor in
the correlation analysis of hub characteristics and
essentiality in yeast physical interaction networks. (A)

Every bar represents a Spearman correlation between a hub

characteristic and essentiality (1 if essential, 0 otherwise) for hubs

in one of the yeast networks. (B) Every bar represents a partial

Spearman correlation between a hub characteristic and essenti-

ality (1 if essential, 0 otherwise) corrected for avPCC-rand for hubs

in one of the yeast networks. Bars of significant correlations

(absolute value w0:1, p-valuev0:05) have black edges. Smaller

uncolored bars show average correlation (with error bars for

standard deviations) in 100 random networks on the same genes

with the same number of interactions for each. Random networks

used for the plot are different from those used for the calculation of

avPCC-rand.

(TIF)

Table S1 Spearman correlation of avPCC with cluster-
ing, betweenness, participation and functional similar-
ity of hubs in the network.
(PDF)

Table S2 Spearman correlation of clustering coefficient
with betweenness, participation and functional similar-
ity of hubs in the network.

(PDF)

Table S3 Spearman correlation of betweenness central-
ity with participation and functional similarity of hubs
in the network.

(PDF)

Table S4 Spearman correlation of participation coeffi-
cient with functional similarity.

(PDF)

Table S5 Spearman correlation for characteristics of
orthologous hubs in Yeast-hq and Human-hq .

(PDF)

Table S6 Spearman correlation of avPCC for orthologs
between species.

(PDF)

Table S7 Spearman correlation of clustering coefficient
for orthologs between species.

(PDF)

Table S8 Spearman correlation of betweenness central-
ity for orthologs between species.

(PDF)

Table S9 Spearman correlation of participation coeffi-
cient for orthologs between species.

(PDF)

Table S10 Spearman correlation of functional similar-
ity for orthologs between species.

(PDF)

Table S11 Fraction of hubs annotated with GO terms in
each network.

(PDF)

Table S12 Interaction evidence types from different
sources used for interaction annotation.

(PDF)

Table S13 Datasets used in S. cerevisiae expression
compendium.

(PDF)

Table S14 Datasets used in D. melanogaster expression
compendium.

(PDF)

Text S1 Simple topological features reflect dynamics
and modularity in protein interaction networks.

(PDF)
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63. Guimerá R, Amaral LAN (2005) Functional cartography of complex metabolic

networks. Nature 433: 895–900.

64. Jiang P, Singh M (2010) SPICi: a fast clustering algorithm for large biological

networks. Bioinformatics 26: 1105–1111.

65. Newman MEJ (2006) Modularity and community structure in networks.

Proceedings of the National Academy of Sciences 103: 8577–8582.

Topology Reflects Dynamics and Modularity in PPI

PLOS Computational Biology | www.ploscompbiol.org 16 October 2013 | Volume 9 | Issue 10 | e1003243


