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Abstract—We introduce a class of eventually almost periodic sequences where some suffix is almost
periodic (i.e., uniformly recurrent). The class of generalized almost periodic sequences includes the
class of eventually almost periodic sequences, and we prove this inclusion to be strict. We also prove
that the class of eventually almost periodic sequences is closed under finite automata mappings and
finite transductions. Moreover, we obtain an effective form of this result. In conclusion we consider
some algorithmic questions related to the almost periodicity.
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1. INTRODUCTION

Almost periodic (in other terminology, uniformly recurrent) sequences were studied in the works
of Morse and Hedlund [4, 5] and of many others (e.g., see [2, 7]). A sequence is almost periodic if
every its factor occurs in it infinitely many times with bounded gaps. This notion first appeared in the
field of symbolic dynamics, but then turned out to be interesting in connection with computer science,
mathematical logic, combinatorics on words. Generalized almost periodic sequences were introduced
by A. L. Semenov in [11] (under the name “almost periodic”) while studying logical theories of unary
functions over N. A sequence is generalized almost periodic if each of its factors either occurs in it
infinitely many times with bounded gaps or occurs only finitely many times. We introduce a new class
of sequences called eventually almost periodic, where some suffix is almost periodic. Then we study
some properties of this class.

This paper is organized as follows.
In Section 2 we give formal definitions of different generalizations of the periodicity notion. The class

of generalized almost periodic sequences includes the class of eventually almost periodic sequences. We
prove this inclusion to be strict (Theorem 2.1).

Section 3 is devoted to automata mappings. Generalized almost periodic sequences were studied in
detail in [7, 12] (under the name “almost periodic”). In particular, the authors prove that the class of
generalized almost periodic sequences is closed under finite automata mappings. The class of images
of almost periodic sequences under finite automata mappings contains the class of eventually almost
periodic sequences. The main result of the paper (Theorem 3.2) establishes the equality of the classes. In
other words, Theorem 3.2 says that finite automata preserve the property of eventual almost periodicity.
Moreover, an effective variant of this theorem is proved (Theorem 3.3). Then we consider a generalization
of finite automata, i.e., finite transducers, and prove the same statement for them.

In Section 4 we deal with some algorithmic questions connected with almost periodicity1). Namely,
we prove that some properties of sequences related to almost periodicity do not have corresponding
effective analogs (in contrast to Theorem 3.2 with effective version in Theorem 3.3). For instance, we

*E-mail: yura@mccme.ru.
1)Note that we usually use the term “almost periodicity” in two different ways: The first one comes from the formal definition

of an almost periodic sequence, and the second one (that in particular is used here) is for the general property of being close
to periodic that we formalize in three different ways. Some further remarks on terminology are given throughout the paper.
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60 PRITYKIN

prove that given an eventually almost periodic sequence and its regulator, we can not find any prefix
which is sufficient to cut from this sequence in order to obtain an almost periodic sequence. Actually,
the results of these facts are reduced to concrete constructions in combinatorics on words.

Let us introduce some basic notions and notations.
Let us denote {0, 1} by B, the set of natural numbers {0, 1, 2, . . . } by N. Let Σ be a finite alphabet with

at least two symbols. We consider sequences over this alphabet, i.e., mappings ω : N → Σ. The set of all
such sequences forms the standard Cantor metric space. Denote this space by ΣN. Then lim

n→∞
xn = ω,

if ∀i ∃n ∀m > n xm(i) = ω(i) (this definition works for finite xn as well).

Let us denote by Σ∗ the set of all finite words over Σ including the empty word Λ. If i ≤ j are natural
numbers, denote by [i, j] the segment of N with ends in i and j, i.e., the set {i, i + 1, i + 2, . . . , j}. Also
denote by ω[i, j] a subword ω(i)ω(i + 1) . . . ω(j) of a sequence ω. A segment [i, j] is an occurrence
of a word x ∈ Σ∗ in a sequence ω if ω[i, j] = x. We say that x �= Λ is a factor of ω if x occurs in ω.
A word of the form ω[0, i] for some i is called a prefix of ω, and respectively a sequence of the form
ω(i)ω(i + 1)ω(i + 2) . . . for some i is called a suffix of ω and is denoted by ω[i,∞). Denote by |x| the
length of a word x. An occurrence x = ω[i, j] in ω is k-aligned if k|i. We imagine sequences going
horizontally from left to right, so we use terms “to the left” and “to the right” when speaking of smaller
and greater indices respectively.

2. ALMOST PERIODICITY

A sequence ω is periodic if for some T we have ω(i) = ω(i + T ) for each i ∈ N. This T is called a
period of ω. The class of all periodic sequences we denote by P. Let us consider some extensions of this
class.

A sequence ω is called generalized almost periodic if for every factor x of ω occurring in it infinitely
many times, there exists a number l such that every l-length factor of ω contains at least one occurrence
of x. We denote the class of all generalized almost periodic sequences by GAP .

A sequence ω is called almost periodic if for every factor x of ω there exists a number l such that
every l-length factor of ω contains at least one occurrence of x (and therefore x occurs in ω infinitely
many times). Denote by AP the class of all almost periodic sequences. Clearly, in order to show the
almost periodicity of a sequence, it is sufficient to check the mentioned condition only for all prefixes but
not for all factors.

Let us introduce another definition for convenience. A sequence ω is eventually almost periodic
if some its suffix is almost periodic. The class of all eventually almost periodic sequences we denote by
EAP .

Suppose ω ∈ EAP . Denote by pr(ω) the minimal n such that ω[n,∞) ∈ AP. Thus for each
m � pr(ω) we have ω[m,∞) ∈ AP.

A function Rω : N → N is an almost periodicity regulator of a sequence ω ∈ GAP , if

(1) every n-length subword occurring in ω infinitely many times occurs in every Rω(n)-length factor
of ω;

(2) every n-length word occurring finitely many times in ω does not occur in ω[Rω(n),∞).

The latter condition is important only for sequences in GAP \AP. Note that regulator is not unique:
every function greater than regulator is also a regulator. We will also use letters f, g, . . . for regulators.

Clearly, P ⊂ AP ⊂ EAP ⊂ GAP. In fact, all these inclusions are strict. For instance, the famous
Thue–Morse sequence ωT = 0110100110010110 . . . (see [1, 13] or Section 4) is an example of the
sequence in AP but not in P (moreover, AP has cardinality continuum while P is countable, see [3] or
[7] for the proofs). The inequality AP � EAP is obvious. The inequality EAP � GAP was first proved
in [8]. We present here essentially the same proof, though with some differences in technical details. We
will refer to some parts of this proof later.

Theorem 2.1. There exists a binary sequence ω ∈ GAP \ EAP .
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ALMOST PERIODICITY, FINITE AUTOMATA MAPPINGS 61

Proof. Let us construct a sequence of binary words

a0 = 1, a1 = 10011, a2 = 1001101100011001001110011,

and so on. The word an+1 is obtained from an in accordance with this rule:

an+1 = ananananan,

where x is a word obtained from x by changing every 0 to 1 and 1 to 0. Let

cn = anananan

and

ω = c0c1c2c3 . . .

Let us prove that ω ∈ GAP \ EAP.

The length of an is 5n, so the length of c0c1 . . . cn−1 is 4(1 + 5 + . . . + 5n−1) = 5n − 1. For
convenience, let

ln = 5n − 1 = |c0c1 . . . cn−1|.

Let us show that ω is generalized almost periodic. Suppose x �= Λ occurs in ω infinitely many times.
Take n such that |x| < 5n. Suppose [i, j] is an occurrence of x in ω such that i ≥ ln. By construction,
for every k we can represent ω[lk,∞) as a concatenation of words ak and ak. Thus (by the assumption
about i) the word x is a subword of either anan, anan, anan, or anan. Note that 10011 contains all
words of length two (00, 01, 10 and 11), so an+1 contains each of anan, anan, anan, anan. Hence x is a
subword of an+1. Similarly, x is a subword of an+1. In each 2|an+1|-length factor of ω[ln+1,∞), an+1 or
an+1 occurs. Hence for l = (5n+1 − 1) + 2 · 5n+1 the word x occurs in every l-length factor of ω.

Now let us prove that for every n ≥ 1 the word cn does not occur in ω[ln+1,∞). This would imply
that cn occurs, but only finitely many times in the suffix ω[ln,∞), i. e., this suffix is not almost periodic.
Therefore ω is not eventually almost periodic.

Let ν = ω[ln+1,∞). As it was already noted above, for each k such that 1 ≤ k ≤ n + 1, ν is a
concatenation of words ak and ak. Assume cn occurs in ν and let [i, j] be one of this occurrences. For
n ≥ 1 the word cn begins with a1, hence [i, i + 4] is an occurrence of a1 in ν. We see that a1 = 10011
occurs in a1a1 = 1001110011, a1a1 = 1001101100, a1a1 = 0110010011, or a1a1 = 0110001100 only in
0-th or 5-th position. Thus [i, j] is 5-aligned, and hence ν and cn can be considered as constructed of
“letters” a1 and a1, and we assume that cn occurs in ν. Now it is easy to prove by induction on m that
[i, j] is 5m-aligned for 1 � m � n, i. e., we can consider ν and cn as constructed from “letters” am and
am, and assume that cn occurs in ν. The base for m = 1 is already proved. If we know this statement for
m = k, we can represent ν and cn as constructed from ak and ak, and assume cn occurs in ν. Then in
order to prove the statement for m = k + 1, we can repeat the same argument as for m = 1 changing 1
and 0 to am and am and taking into account that cn begins with am for each 1 ≤ m ≤ n.

Therefore we have shown that [i, j] is 5n-aligned, hence if we consider ν and cn as being constructed
from “letters” an and an, then cn = anananan occurs in ν. But note that in every sequence constructed
by concatenation of words a1 = 10011 and a1 = 01100 there is no any occurrence of 0000 or 1111. That
is why cn also can not occur in ν. This is the contradiction.

Moreover, it is quite easy to modify the proof in order to show that GAP \ EAP has cardinality
continuum. For instance, for each sequence τ : N → {4, 5} we can construct ωτ in the same way as
in the proof of Theorem 2.1, but instead of cn we take

c(τ)
n = anan . . . an

︸ ︷︷ ︸

τ(n)

.

Obviously, all ωτ are different for different τ and hence there exists continuum of various τ .
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3. FINITE AUTOMATA MAPPINGS

It seems interesting to understand whether some transformations of sequences preserve the property
of almost periodicity. The simplest type of algorithmic transformation is a finite automaton mapping.
Another motivation, less philosophical, is that finite automata mappings were one of the main tools in
[12] while studying almost periodicity and proving the decidability criterion for first-order and monadic
theories of unary functions over N.

A finite automaton is a tuple F = 〈Σ,Δ, Q, q̃, f〉, where Σ and Δ are finite sets called input and
output alphabets respectively, Q is a finite set of states, q̃ ∈ Q is the initial state, and

f : Q × Σ → Q × Δ

is the transition function. For α ∈ ΣN consider the sequence 〈pn, β(n)〉∞n=0, where pn∈Q, β(n)∈Δ, and
assume p0 = q̃ and 〈pn+1, β(n)〉 = f(pn, α(n)) for each n. Then we call β = F (α) a finite automaton
mapping of α. If [i, j] is an occurrence of a word x in α, and pi = q, then we say that automaton F comes
to this occurrence of x being in the state q.

In [7, 12] the following statement was proved.

Theorem 3.1. If F is a finite automaton and ω ∈ GAP , then F (ω) ∈ GAP .

A counterpart of this statement for eventually almost periodic sequences was proved in [8]. We
present here this proof (a little modified though), for the analysis of this proof motivates the main result
of this Section.

Theorem 3.2. If F is a finite automaton and ω ∈ EAP , then F (ω) ∈ EAP .

Proof. Obviously, it is enough to prove the theorem for ω ∈ AP , since prefix does not matter.
Let ω ∈ AP. By Theorem 3.1, F (ω) ∈ GAP . Suppose F (ω) is not eventually almost periodic. This

means that for every natural N there exists a word that has an occurrence in F (ω)[N,∞) which is the
rightmost occurrence of this word into the sequence. Indeed, if we remove the prefix [0, N ] from F (ω),
we do not get an almost periodic sequence, hence there exists a word occurring in this sequence only
finitely many times. Then take its rightmost occurrence.

Let [i0, j0] be the rightmost occurrence of a word y0 in F (ω). For some l0 the word x0 = ω[i0, j0]
occurs in every l0-length factor in ω, due to the property of almost periodicity. If F comes to i0 being in
the state q0, then F never comes to righter occurrences of x being in the state q0, since otherwise the
automaton would output y0 completely.

Now let [r, s] be the rightmost occurrence of some word a in F (ω), where r > i0 + l0. The factor
ω[r − l0, r] contains an occurrence [r′, s′] of the word x0. By definition of r, we have r′ > i0. Thus let

i1 = r′, j1 = s, x1 = ω[i1, j1], y1 = F (ω)[i1, j1].

Since a does not occur in F (ω)[r,∞), then y1 does not occur in F (ω)[i1,∞), for it contains a as a
subword. Therefore if the automaton comes to the position i1 being in the state q1, then it never comes
to righter occurrences of x1 being in the state q1. Since x1 begins with ω[r′, s′] = x0, and r′ > i0, then
q1 �= q0. We have found the word x1 such that the automaton F never comes to occurrences of x1 to the
right of i1 being in the state q0 or q1.

Let m = |Q|. Arguing in the same manner, for k < m we construct the words xk = ω[ik, jk] and
corresponding different states qk, such that F never comes to occurrences of xk in ω[ik,∞) in the states
q0, q1, . . . , qk. For k = m we get the contradiction.

Note that this proof is non-effective in the following sense. Suppose we know ω ∈ AP and its almost
periodicity regulator Rω. Then by Theorem 3.2 an upper bound on pr(F (ω)) exists for F (ω) ∈ EAP , but
the presented proof does not allow us to obtain any such bound.

The following effective version of Theorem 3.2 was announced in [9].
For a function g denote g ◦ g ◦ · · · ◦ g

︸ ︷︷ ︸

n

by gn.
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Theorem 3.3. Let F be a finite automaton with n states and ω ∈ AP. Then

pr(F (ω)) � Rn
ω(1) + Rn−1

ω (1) + · · · + Rω(1).

In order to prove this theorem, first we consider a particular type of automata called reversible for
which the statement of the theorem is simple. Then we introduce a construction in combinatorics on
words which allows us to reduce the general situation to the case of reversible automata.

A finite automaton F = 〈Σ,Δ, Q, q̃, f〉 is reversible, if for every q ∈ Q and a ∈ Σ there exist unique
q′ ∈ Q and b ∈ Δ, such that f(q′, a) = 〈q, b〉. In other words, in such an automaton each letter of the
input alphabet Σ performs a permutation on Q (output alphabet does not matter). Given a state, we
can reconstruct the sequence of previous states from the sequence of previous input letters (that is what
reversibility means).

Theorem 3.4. If F is a reversible finite automaton and ω ∈ AP, then F (ω) ∈ AP.

Proof. Suppose x occurs in ω, and F comes to this occurrence being in the state q. Our goal is to prove
that the next time when F comes to x in ω being in the state q, is at some distance from the previous such
situation, and we can upper-bound this distance in terms of |x| and Rω. This means the same bound for
this distance works for each situation when F comes to x being in the state q. So this is sufficient for
our purpose.

Let x = x0 = ω[r, s] be a factor of ω; the automaton comes to this occurrence being in some state q.
Let [i0, j0] be the next occurrence of x0 in ω, so that j0 � r + Rω(|x|) (the segment ω[r + 1, r + Rω(|x|)]
contains an occurrence of x). If F comes to this occurrence being in the state q, then we are done.
Otherwise F comes to i0 being in the state q0 �= q. Let x1 = ω[r, j0], and let [i1, j1] be the next
occurrence of x1 in ω, so that j1 � r + Rω(Rω(|x|) + 1), for |x1| = Rω(|x|) + 1. Suppose the automaton
comes to the position i1 + i0 − r being in the state q1. If q1 = q, then we are done, for ω[i1 + i0 − r, j1] =
x0. If q1 = q0, then F comes to the position i1 being in the state q, due to reversibility of F , and we are
done. Otherwise q1 �= q and q1 �= q0. Similarly, for x2 = ω[r, j1] and its occurrence [i2, j2] in ω such that
i2 > r and j2 � r + Rω(Rω(Rω(|x|) + 1) + 1), in the worst case F comes to the position i2 + i1 + i0
being in the state q2 where q2 �= q, q2 �= q0, and q2 �= q1. Arguing in the same manner, for k < m = |Q|
we construct the words x0, x1, . . . , xk with occurrences [i0, j0], [i1, j1], . . . , [ik, jk], and different states
q0, q1, . . . , qk−1 such that in the worst case F cannot come to the position ik + ik−1 + · · · + i0 − kr
being in the states q, q0, . . . , qk−1. Thus for k = m we are done for sure, and the bound for the distance
is f(f(. . . (|x|) . . . )), where f = Rω + 1 and the number of iterations is m.

For ω ∈ ΣN, ν ∈ ΔN let us define ω × ν ∈ (Σ × Δ)N so that (ω × ν)(i) = 〈ω(i), ν(i)〉.

Corollary 3.1. If ω ∈ AP and ν ∈ P, then ω × ν ∈ AP.

Proof. The operation “×” with a periodic sequence can be simulated by a cyclic finite automaton that
is obviously reversible.

Now consider the following construction. Let ω ∈ ΣN, and suppose a ∈ Σ occurs in ω infinitely many
times. Cut ω into blocks of the form xa, where x ∈ (Σ \ {a})∗, i.e., into blocks containing a symbol a on
the end and not containing any other occurrences of a. To do this, we need to cut after each occurrence
of a. If a occurs in ω with bounded gaps, then the number of all such blocks is finite (for example, if
ω ∈ GAP , then the length of these blocks is not greater than Rω(1)). Encode these blocks by symbols of
some finite alphabet, denote this alphabet by ba,ω(Σ). Thus we obtained a new sequence in this alphabet
from ω. Delete the first symbol of this sequence. The result is called an a-split of ω and is denoted by
sa(ω). For example, 0-split of the sequence 3200122403100110 . . . is (0)(12240)(310)(0)(110) . . .

Lemma 3.1. Let ω ∈ AP , and suppose a ∈ Σ occurs in ω. Then sa(ω) ∈ AP.
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Proof. Let k be the maximal length of the a-split blocks. Consider a prefix x of sa(ω). The
corresponding word y in ω is not longer than k|x|. Let z = ay, |z| � k|x| + 1. The word z occurs in ω,
and the first symbol of the first occurrence of z intersects with the last symbol of the first block which is
then deleted in the construction. Therefore z occurs in every factor of length l = Rω(k|x| + 1) in ω. The
first and the last symbols of z are a, so every such occurrence is well-aligned with respect to the a-split
of ω. Hence for every occurrence of z in ω there is an occurrence of x in sa(ω). Therefore x occurs in
each factor of length Rω(k|x| + 1) in sa(ω).

Now we can prove the promised theorem.

Proof of Theorem 3.3. Let F = 〈Σ,Δ, Q, q̃, f〉 and |Q| = n. We construct an algorithm to compute
some

l � pr(F (ω)),

and simultaneously prove

l � Rn
ω(1) + Rn−1

ω (1) + · · · + Rω(1).

Let us assume that every automaton in the proof has the maximum possible output alphabet “input
alphabet”×“the set of states” (the general case can be obtained from this one by projection). For
example, for F this is Σ × Q. Correspondingly, the transition function f prints the pair of a current
state and an input symbol to the output. In what follows, we omit the second component of the
transition function value, i.e., for instance, instead of f(p, a) = 〈q, b〉 we write simply f(p, a) = q with
f(p, a) = 〈q, 〈p, a〉〉 in mind.

Let ω0 = ω. We assume every symbol of Σ occurs in ω0, otherwise we restrict F only to the symbols
occurring in ω0; to determine these symbols effectively, we can read first Rω0(1) symbols of ω0.

If F is reversible, by Theorem 3.4 we get pr(F (ω0)) = 0. Otherwise there exists a symbol a0 ∈ Σ that
accomplishes a non-one-to-one mapping of Q, so that the set

Q1 = {q : ∃q′ f(q′, a0) = q}
is a proper subset of Q. Consider

ω1 = sa0(ω0),

which is almost periodic by Lemma 3.1. Note that starting with any state on ω0, the automaton F comes
to any block of the a0-split of ω0 being in the state of the set Q1, for every such block has a0 in the end.

Let us construct a new automaton F1 (the construction is effective over F ). Let the input alphabet
of F1 be ba0,ω0(Σ), the set of states be Q1, and the value of the transition function on x ∈ ba0,ω0(Σ),
q ∈ Q1 be the output of F when starting in the state q and given the word x represented in symbols of Σ
as input. Let the initial state of F1 be the state of F that is reached after the work on the prefix of ω until
the first occurrence of a0 (the prefix which we delete in order to obtain sa0(ω0) from ω0). Now the work
of F1 on ω1 simulates the work of F on ω0. Note that ω1 is obtained from ω by deleting not more than
Rω0(1) first symbols, counting in the alphabet Σ.

We have the sequence ω1 (in the alphabet larger than initial) and the automaton F1 with the set of
states less than initial. If F1 is not reversible, then we can repeat the procedure from the last paragraph.
Thus we obtain the sequence ω2 in some alphabet ba1,ω1(ba0,ω0(Σ)), and the automaton F2 with the
set of states less than previous, working on ω2. The sequence ω2 is obtained from ω1 by deleting not
more than Rω1(1) first symbols, counting in the alphabet ba0,ω0(Σ). Therefore ω2, written in the initial
alphabet Σ, is obtained from ω by deleting not more than Rω0(Rω0(1)) + Rω0(1) first symbols, counting
in the alphabet Σ.

An automaton with a single state (and with arbitrary input alphabet) is always reversible. Hence
after k repetitions of the described procedure for some k � n, we come to the situation where the
reversible automaton Fk works on the almost periodic sequence ωk in some alphabet (after each
repetition of the procedure the number of states decreases). The symbols of this alphabet encode the
blocks of the initial sequence. Thus Fk(ωk) ∈ AP .
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Writing ωk back in the alphabet Σ, we get some suffix ω′ obtained from ω by deleting a prefix not
longer than

Rk
ω(1) + Rk−1

ω (1) + · · · + Rω(1) � Rn
ω(1) + Rn−1

ω (1) + · · · + Rω(1).

It only remains to check why Fk(ωk) ∈ AP implies F (ω′) ∈ AP . Let us explain this in a simple
case when the automaton F1 obtained after the first iteration of the procedure is reversible (the general
situation can be reduced to this case by induction). Then ω′ is obtained from ω by deleting first symbols
until the first occurrence of a0. Let the initial state of F1 (in which F comes to ω′) be q. To show
F (ω′) ∈ AP , it is necessary and sufficient to check whether for every prefix of ω′, the occurrences of its
copies in ω′ to which F comes being in the state q, are sufficiently regular, i.e., these copies occur in each
l-length factor for some l (one direction is obvious, the other follows from our requirement for automata
always to output the pair 〈input symbol, current state〉).

Let x be a prefix of ω′ that ends with a0 (an arbitrary prefix is contained in some such prefix). We
can correctly split it into blocks ending with a0. Let us denote this split by y. The automaton F1 is
reversible, so F1(ω1) ∈ AP . By the necessary and sufficient condition of the previous paragraph, F1

comes to y being in the state q in each t-length factor for some t. Every such situation corresponds in ω′

to coming F to some occurrence of x being in the state q, and this happens in each tk-length factor,
where k � Rω(1) is the maximal length of the blocks.

It is not possible to improve significantly the upper bound on pr(F (ω)) in Theorem 3.3 and to get rid
of the number of iterations proportional to the number of states. It follows from the construction in [10]
after small modifications.

It is interesting that now we have two different proofs of Theorem 3.2, and the connection between
them is not clear.

The results on finite automata mappings can be extended to more general class of mappings
preformed by finite transducers.

Let Σ and Δ be finite alphabets. The mapping h : Σ∗ → Δ∗ is called a homomorphism, if for any
u, v ∈ Σ∗ we have h(uv) = h(u)h(v). Clearly, a homomorphism is completely determined by its values
on single-letter words. Let ω ∈ ΣN. By definition, put

h(ω) = h(ω(0))h(ω(1))h(ω(2)) . . .

Suppose h : Σ∗ → Δ∗ is a homomorphism, ω ∈ ΣN is generalized almost periodic. In [7] it was
shown that if h(ω) is infinite, then it is generalized almost periodic. Therefore if ω is almost periodic,
and h(ω) is infinite, then h(ω) is also almost periodic. Indeed, it suffices to show that every v occurring
in h(ω) occurs infinitely many times. But there exists some factor u of ω such that h(u) contains v, and
by the definition of almost periodicity u occurs in ω infinitely many times. Clearly, for ω ∈ EAP we have
h(ω) ∈ EAP , if h(ω) is infinite.

A natural generalization of a finite automaton is a finite transducer (see [7, 14] for more detail). The
difference is in that now we allow it to output an arbitrary word (including the empty one) over an output
alphabet after reading only one character from the input. Formally, we only change the definition of the
transition function. Now it has the form

f : Q × Σ → Q × Δ∗.

If the sequence 〈pn, vn〉∞n=0, where pn ∈ Q, vn ∈ Δ∗, is the mapping of α, then the output is the sequence
v0v1v2 . . .

Actually, we can decompose the mapping performed by a finite transducer, into two: the first one is a
finite automaton mapping and another one is a homomorphism. Each of these mappings preserves the
class GAP , so we get the consequence: Finite transducers map generalized almost periodic sequences
to generalized almost periodic sequences. Similarly, by Theorem 3.2 and the arguments above we also
get the following

Corollary 3.2. Let F be a finite transducer, ω ∈ EAP . Suppose F (ω) is infinite. Then F (ω) ∈ EAP .
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4. EFFECTIVENESS

Lots of interesting algorithmic questions naturally appear in connection with almost periodicity, i.e.,
if one can check some property or find some characteristic algorithmically being given a sequence.
Sometimes these questions are just effectiveness issues for corresponding noneffective results, for
example, Theorem 3.3 is an effective variant of Theorem 3.2. Further, we mainly deal with the case
where the answers to these questions are negative. We prove that some properties do not have effective
analogs.

Formally, we consider an algorithm with an oracle for a sequence as input. This algorithm halts on
every oracle and outputs a finite binary word or any other constructive object. The main property of such
an algorithm is continuity: it outputs the answer on having read only finite number of symbols from the
sequence. Thus, in order to prove non-effectiveness, we only need to show discontinuity.

If we have only a sequence, then we cannot recognize almost any property of this sequence. For
example it is even impossible to understand whether the symbol 1 occurs in a given binary sequence: If
an algorithm checks some finite number of symbols and all these symbols are 0, then it can not guarantee
that 1 does not occur further. The question about algorithmic decidability becomes more interesting if we
allow to provide some additional information on input. In case of generalized almost periodic sequences
it is natural to add an almost periodicity regulator.

It is easy to decode unambiguously functions N → N and also pairs 〈sequence, function〉 by binary
sequences. That is why we can correctly consider algorithms with a generalized almost periodic
sequence ω and its regulator f on input.

From this point of view the above problem can be solved effectively: After reading the first f(1)
symbols of the sequence we can say whether or not 1 occurs in it, and moreover after reading the next
f(1) symbols we can say whether 1 occurs in it finitely or infinitely many times.

The following several theorems are examples of problems concerning almost periodicity which do not
have effective analogs. It is especially interesting to compare the results of Theorem 4.1 and Theorem
3.3. Theorem 4.4 is also connected with Theorem 3.3. All the following theorems were announced in [9].

We say fn → f for fn, f : N → N if ∀i ∃n ∀m > n fm(i) = f(i).

Theorem 4.1. Given ω ∈ EAP and its regulator f , it is impossible to compute algorithmically
any l � pr(ω).

Let us recall that ωT is the Thue–Morse sequence. This sequence can be obtained as follows. Let
a0 = 0, an+1 = anan, and ωT = lim

n→∞
an. Notice that |an| = 2n. The Thue–Morse sequence has lots of

interesting properties (see [1]), but we are interested in the following one: ωT is cube-free, i.e., for any
a ∈ B

∗, a �= Λ the word aaa does not occur in ωT . This was first proved in [13].

Proof of Theorem 4.1. It suffices to construct ωn ∈ EAP, ω ∈ AP with regulators fn and f such that
ωn → ω, fn → f , but pr(ωn) → ∞. Indeed, suppose the mentioned algorithm exists and it outputs some
l � 0 (arbitrary for ω ∈ AP) given 〈ω, f〉 on the input. During the computation of l the algorithm reads
only finite number of symbols in ω and of values of f . Hence there exists N > l such that the algorithm
does not know any ω(k) or f(k) for k > N . Since pr(ωn) → ∞, there exists n such that pr(ωn) > N .
The algorithm works on the input 〈ωn, fn〉 in the same way as it works on the input 〈ω, f〉, and then
outputs l, but pr(ωn) > N > l.

Let ω = ωT , ωn = anananω. Notice that pr(ωn) � 2n. Indeed, if pr(ωn) < 2n, then ananω =
anananananan . . . ∈ AP, and hence ananan occurs in ωT , which is the contradiction with the cube-
freeness of the Thue–Morse sequence.

It only remains to show that we can find regulators fn and f for ωn and ω such that fn → f . It suffices
to find the same regulator g for all ωn (then we can increase it and obtain the same regulator for all ωn and
for ω too). Fix some Rω and let g = 4Rω . Let a k-length word v occur in ωn = anananω infinitely many
times. Let us take the factor ω[i, j] of length 4Rω(k) and show that v occurs in it. If j � 3 · 2n + Rω(k),
then v occurs in the factor ω[3 · 2n, 3 · 2n + Rω(k)] (by the definition of Rω). If j < 3 · 2n + Rω(k), then
i � 3 · 2n − 3Rω(k). But i � 0, therefore Rω(k) � 2n = |an|. Then ωn[i, i + Rω(k)] is contained in anan.
But anan occurs in ω, so ωn[i, i + Rω(k)] occurs in ω as well. Therefore v occurs in ω.
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However g is not yet what we need. We should watch the words occurring in ωn finitely many times.
Obviously, if some v occurs in ωn finitely many times, then |v| = k > 2n (otherwise v occurs in the
concatenation of two consecutive words an or an, and thus in ω). Therefore this can happen only for
finite number of different n. Considering all the situations when words of length k occur in some ωn

finitely many times, we probably increase the value g(k), but only finitely many times. Thus the required
bound for the regulators exists.

We have already seen that EAP � GAP (Theorem 2.1). Using the same construction, we can show
that it is impossible to separate these classes effectively.

Theorem 4.2. Given ω ∈ GAP and its regulator f , it is impossible to determine algorithmically
whether ω ∈ EAP.

In [7] the following universal method for constructing almost periodic sequences was presented. This
method is based on block algebra on words introduced in [6] and then studied in [3].

A sequence 〈An, ln〉, where An ⊂ Σ∗ for a finite alphabet Σ, ln ∈ N, is called a strong Σ-scheme, if
the following conditions hold:

(1) all the words in An have length ln;

(2) every word u ∈ An+1 has the form u = v1v2 . . . vk, where vi ∈ An, and for every w ∈ An there
exists i such that vi = w.

A sequence α ∈ ΣN is said to be generated by a strong Σ-scheme 〈An, ln〉 if for every i and n

α[iln, (i + 1)ln − 1] ∈ An.

It is easy to see (due to compactness) that every strong scheme generates some sequence. In [7], it
is proved that every sequence generated by a strong scheme is almost periodic. Moreover, every almost
periodic sequence is generated by some strong scheme.

Proof of Theorem 4.2. It suffices to construct ωn ∈ EAP, ω ∈ GAP \ EAP with the same regulator f
for all ωn such that ωn → ω.

Let a0 = 1, and then according to the rule: an+1 = ananananan. Denote anananan by cn. As in
the proof of Theorem 2.1, let us denote ln = 5n − 1 = |с0c1 . . . сn−1|. Consider ω = с0с1с2с3 . . . and
ν = lim

n→∞
an. As it was proved in [8] (see also Theorem 2.1), ω ∈ GAP \ EAP. Let ωn = c0c1 . . . cnν.

The sequence ν is generated by the strong scheme 〈{an, an}, 5n〉, hence ν ∈ AP. Therefore ωn ∈ EAP.
Obviously, ωn → ω, and it only remains to find a common regulator f . We will get a finite number of
conditions of the form f(k) � α, then we can take the maximum among all these α.

Let a k-length word v = ωn[i, j] occur in ωn = c0c1 . . . cnν infinitely many times. Then v occurs
in ν, hence in some am as well. Therefore v occurs in ω infinitely many times and it suffices to take
f(k) � Rω(k) + Rν(k).

Let a k-length word v = ωn[i, j] occur in ωn finitely many times. Then i < ln. If j > ln, then k > 5n,
since otherwise v would occur in some am and hence would occur in ν infinitely many times. But the
inequality k > 5n holds only for finite number of different n, and this yields only finitely many conditions
on f(k). Now suppose j � ln. But then v occurs in c0c1 . . . cn and occurs in ω finitely many times
(otherwise v would occur in some am). Therefore in this case it is sufficient to take f(k) � Rω(k).

The following theorem shows that it is even impossible to separate effectively AP and P.

Theorem 4.3. Given ω ∈ AP and its regulator f , it is impossible to determine algorithmically
whether ω ∈ P.
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Proof. It suffices to construct ωn ∈ P, ω ∈ AP \ P with a common regulator f for all ωn such that
ωn → ω.

Every almost periodic sequence can be obtained from a strong Σ-scheme 〈An, ln〉. Let us strengthen
the main condition on An: Let us consider strong schemes such that for each n ∈ N every u ∈ An+1 has
the form u = v1v2 . . . vk, where vi ∈ An, and for every w1, w2 ∈ An there exists i < k such that vivi+1 =
w1w2. Note that such schemes exist and can generate non-periodic sequences, e.g., 〈{an, an}, 2n〉
generates the Thue–Morse sequence ωT .

Let 〈An, ln〉 be a strong scheme satisfying the strengthened condition from the previous paragraph,
generating ω /∈ P. Let pn = ω[0, ln]. Thus pn ∈ An and lim

n→∞
pn = ω. Assume ωn = pnpnpn . . . ∈ P.

Then ωn → ω and it only remains to find some common regulator f for all ωn.

Let v = ωn[i, j], |v| = k; since ωn ∈ P, it follows that v occurs in ωn infinitely many times. The
inequality k � |pn| = ln holds only for finite number of different n, and this yields only finitely many
conditions on f(k). Now we can assume that k < ln. Let us take t such that lt−1 < k � lt (it is
important that t does not depend on n and is uniquely determined by k). Then t < n. There exists
m such that mlt � i and j � (m + 2)lt, i.e., v occurs in some ab, where a, b ∈ At. Then by the scheme
property v occurs in every c ∈ At+1. But in every 2lt+1-length factor of ωn, there exists an occurrence of
some c ∈ At+1 (completely contained in some pn). Therefore it is sufficient to take f(k) � 2lt+1.

By the argument of Theorem 4.3, there exists an infinite set of periodic sequences with common
regulator (while the period tends to infinity). This construction can be used in the following theorem:
after adding one symbol to an almost periodic sequence, we can not check whether it is still almost
periodic.

Theorem 4.4. Given ω ∈ EAP, its regulator f and some l � pr(ω), it is impossible to find
algorithmically pr(ω).

Lemma 4.1. If aω ∈ AP for a ∈ Σ∗ and ω is periodic with a period l, then aω is periodic with the
period l.

Proof. It suffices to prove the lemma for a single-letter a. Let α = 012 . . . (l − 1)012 . . . (l −
1)012 . . . (l− 1) . . . be a periodic sequence over the alphabet Σl = {0, 1, 2, . . . , l− 1}. Then by Corollary
3.1, aω ×α ∈ AP. In this sequence the symbol 〈a, 0〉 occurs infinitely many times, hence a = ω(l).

Proof of Theorem 4.4. It suffices to construct ωn ∈ EAP, ω ∈ AP with a common regulator f for all
ωn such that ωn → ω and pr(ωn) = 1 (ω ∈ AP means pr(ω) = 0).

Note that 1ωT ∈ AP . Indeed, for each n the words anan and anan occur in ωT , and hence 1an occurs
in ωT too. Similarly, 0ωT ∈ AP .

As it can be seen in the proof of Theorem 4.3, we can choose a sequence kn → ∞ such that all
periodic sequences of the form ω(0) . . . ω(kn)ω(0) . . . ω(kn)ω(0) . . . have a common regulator f . Let us
take a subsequence mn of the sequence kn such that all the symbols ω(mn) are the same. Without loss
of generality, suppose these symbols are 0.

Let ωn = 1ω(0) . . . ω(mn)ω(0) . . . ω(mn)ω(0) . . . and ω = 1ωT . There exists a common regulator g
for these sequences. Indeed, it suffices to satisfy g(k) � f(k) + 1 (from considering the words occurring
infinitely many times) and g(k) � k (from considering the words occurring only finitely many times: This
may happen only for prefixes occurring exactly once).

If ωn ∈ AP, then by Lemma 4.1 the sequence ωn is periodic with the period mn. But ωn(0) = 1 �=
ωn(mn) = 0. Therefore pr(ωn) = 1.

The case where all the symbols ω(mn) are 1 is analogous (then ωn begins with 0).

RUSSIAN MATHEMATICS (IZ. VUZ) Vol. 54 No. 1 2010



ALMOST PERIODICITY, FINITE AUTOMATA MAPPINGS 69

5. ACKNOWLEDGEMENTS

The author is grateful to An. Muchnik (1958–2007) and A. Semenov for introducing for me these
topics and for their permanent support in my work, as well as to M. Raskin, A. Rumyantsev, A. Shen,
N. Vereshchagin, and to all other participants of the Kolmogorov seminar (Faculty of Mechanics and
Mathematics, Moscow State University) for interesting and useful discussions. The results were also
presented at the seminar under the direction of S. Adian, the author is thankful to all the participants for
attention. The author also thanks M. Volkov for the help with preparing the paper for publication.

The work was partially supported by RFBR grants 06-01-00122, 05-01-02803, Scientific Schools
Supporting Council grant NSh-358.2003.1, and Kolmogorov grant of Institute of New Technologies.

REFERENCES
1. J.-P. Allouche and J. Shallit, “The Ubiquitous Prouhet–Thue–Morse Sequence,” in: Sequences and Their

Applications (Proceedings of SETA’98, Springer Verlag, 1999), pp. 1–16.
2. J. Cassaigne, “Recurrence in Infinite Words,” in Proceedings of the 18th Symposium on Theoretical

Aspects of Computer Science (STACS 2001) (Springer Verlag, 2001), pp. 1–11.
3. K. Jacobs, Maschinenerzeugte 0-1-Folgen (Selecta Mathematica II. Springer Verlag: Berlin, Heidelberg,

New York, 1970).
4. M. Morse and G. A. Hedlund, “Symbolic Dynamics,” American Journal of Mathematics 60, 815–866

(1938).
5. M. Morse and G. A. Hedlund, “Symbolic Dynamics II: Sturmian Rrajectories,” American Journal of

Mathematics 62, 1–42 (1940).
6. M. Keane, “Generalized Morse sequences,” Z. Wahrsсheinlichkeitstheorie verw. Geb. 10, 335–353 (1968).
7. An. Muchnik, A. Semenov, and M. Ushakov, “Almost Periodic Sequences,” Theoretical Computer Science

304, 1–33, (2003).
8. Yu. L. Pritykin, “Finite-Automaton Transformations of Strictly Almost-Periodic Sequences,” Mat. Zametki

80 (5), 751–756, (2006).
9. Yu. L. Pritykin, “Finite Automata Mappings of Strongly Almost Periodic Sequences and Algorithmic

Undecidability,” in: Proceedings of XXVIII Conference of Young Scientists (Moscow State University,
Faculty of Mechanics and Mathematics, 2006), pp. 177–181.

10. M. A. Raskin, “On the Estimate of the Regulator for Automaton Mapping of Almost Periodic Sequence,” in:
Proceedings of XXVIII Conference of Young Scientists (Moscow State University, Faculty of Mechanics
and Mathematics, 2006), pp. 181–185.

11. A. L. Semenov, “On Certain Extensions of the Arithmetic of Addition of Natural Numbers,” Izv. Akad. Nauk,
Ser. Matem. 15, pp. 401–418 (1980).

12. A. L. Semenov, “Logical Theories of One-Place Functions on the Set of Natural Numbers,” Izv. Akad. Nauk,
Ser. Matem. 22, 587–618 (1983).
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