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A pure morphic sequence is a right-infinite, symbolic sequence obtained by iterating a
letter-to-word substitution. For instance, the Fibonacci sequence and the Thue–Morse
sequence, which play an important role in theoretical computer science, are pure morphic.
Define a coding as a letter-to-letter substitution. The image of a pure morphic sequence
under a coding is called a morphic sequence.

A sequence x is called uniformly recurrent if for each finite subword u of x there
exists an integer l such that u occurs in every l-length subword of x.

The paper mainly focuses on the problem of deciding whether a given morphic
sequence is uniformly recurrent. Although the status of the problem remains open, we
show some evidence for its decidability: in particular, we prove that it can be solved in
polynomial time on pure morphic sequences and on automatic sequences.

In addition, we prove that the complexity of every uniformly recurrent, morphic
sequence has at most linear growth: here, complexity is understood as the function that
maps each positive integer n to the number of distinct n-length subwords occurring in
the sequence.

Keywords: uniformly recurrent sequence; morphic sequence; automatic sequence; sub-
word complexity; polynomial-time algorithm.
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1. Introduction

Many problems of decidability in combinatorics on words are of great interest and

difficulty. Many difficult problems are connected with free monoid morphisms, also

known as substitutions. A good survey on such problems is [12]. A famous example
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is Post Correspondence Problem (e.g., see [33], Section 5.2, and [12]) which is known

to be undecidable.

In this paper we deal with two classes of sequences well-known in combinatorics

on words: morphic and uniformly recurrent. Let us extend the domain of substi-

tutions to infinite sequences in the obvious way: the image of an infinite sequence

under a substitution is obtained by simultaneously applying the substitution to

all symbols of the sequence. A non-trivial, infinite, fixed point of a substitution is

called a pure morphic sequence. The image of a pure morphic sequence under a sub-

stitution is called a (general) morphic sequence. Such sequences can be effectively

described, i.e., by a finite amount of information. Morphic sequences generalize the

well-known automatic sequences, i.e., those generated by morphisms in which im-

ages of all letters have equal lengths [2]. They appear in symbolic dynamics, number

theory, geometry (e.g., see [28, 29, 2, 16, 17]). Another class of interest is the class of

uniformly recurrent sequencesa, i.e., sequences in which every factor occurs infinitely

often with bounded gaps (the gap size being an arbitrary function of the factor)

between its consecutive occurrences. These sequences first appeared in symbolic

dynamics, but then turned out to be interesting in connection with combinatorics

on words, mathematical logic (e.g., see [2, 20, 30, 31, 26]).

Here we mainly study connections between these two classes of sequences. We

discuss the existence of an algorithm that given a morphic sequence (which, recall,

can be finitely described) determines whether it is uniformly recurrent. Though the

problem in general still remains open, we are successful in two particular cases in

which we find polynomial-time algorithms. The first one is limited to pure morphic

sequences. (This problem was reported as open in [2], Section 10.12, Problem 5.)

The second one considers automatic sequences. Furthermore, besides these criteria,

we prove that uniformly recurrent morphic sequences have linearly increasing sub-

word complexity: recall that the subword (=factor) complexity of a sequence is the

function mapping each integer n ≥ 0 to the number of n-length words that occur

in the sequence.

The paper is organized as follows. In Section 2 we give all formal definitions, as

well as some preliminary results. In Section 3 we deal with pure morphic sequences

and formulate two versions of the uniform recurrence criterion in Theorems 4 and 7.

In Section 4 we study the case of automatic sequences. Uniform recurrence criterion

is discussed in Subsection 4.1. The criterion itself is given in Theorem 18, while in

Theorem 19 we explain how to check it in polynomial time. The (non-uniform)

recurrence criterion as a related problem is discussed in Subsection 4.2. Factor

complexity is studied in Section 5. Theorem 24 says that factor complexity of a

uniformly recurrent morphic sequence is at most linear. In Section 6 we discuss

the problem of determining uniform recurrence for morphic sequences in general.

In Proposition 33 we give the result supporting the conjecture of decidability. In

aAlso known as almost periodic or minimal. They were called strongly or strictly almost periodic

in [20, 27].
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Proposition 35 we prove 0′-decidability of the main problem.

Some attempts to touch these topics were already done. In [5] A. Cobham gives

a criterion for an automatic sequence to be uniformly recurrent. However even if his

criterion gives some effective procedure solving the problem, this procedure does

not look fast. In [18] A. Maes deals with pure morphic sequences and describes a

decision procedure determining their membership in the class of “almost-periodic”

sequences. Maes calls a sequence x almost-periodicb if for every factor u of x, ei-

ther u occurs in x at most finitely many times, or u occurs in x infinitely often

with bounded gaps. Hence, if x is uniformly recurrent or if some suffix of x is uni-

formly recurrent then x is Maes-almost-periodic. The converse is false in general

(see [27, 26]). His algorithm is not polynomial-time, but there are some parallels

between his considerations and our Section 3 (though these parallels are sometimes

hard to formulate). The problem of determining ultimate periodicity for pure mor-

phic sequences was solved independently in [13] and [23]. Some further remarks can

be found in Section 7.

Preliminary versions of some of the results from this paper originally appeared

in [25].

2. Preliminaries

Denote the set of natural numbers {0, 1, 2, . . .} by N, and the standard alphabet

{0, 1, . . . , n− 1} by Σn. Let A be a finite alphabet. Sequences over A are mappings

x : N → A, and the set of sequences over A is denoted by AN. Sequences are also

called infinite words.

Denote by A∗ the set of all finite words overA including the empty word Λ. Word

concatenation is denoted multiplicatively. For i ≤ j, denote by x[i, j] a subword (or

a factor) x(i)x(i+ 1) . . . x(j) of a sequence x. A segment [i, j] is an occurrence of a

word u ∈ A∗ in a sequence x if x[i, j] = u. A word of the form x[0, i] for some i is

called a prefix of x. Denote by |u| the length of a word u.

A sequence x is periodic if for some T we have x(i) = x(i + T ) for each i ∈ N.

According to a usual common agreement, both T and the word x(0) . . . x(T − 1)

are called a period of x. A sequence which is a concatenation of a finite word and

a periodic sequence is called ultimately periodic. This finite word, as well as its

length, are called a preperiod of the sequence. The paper focuses on the following

two natural extensions of the class of periodic sequences.

A sequence is called recurrent if each factor occurs in this sequence infinitely

many times.

A sequence x is called uniformly recurrent if for every factor u of x there exists

a number l such that every l-length factor of x contains at least one occurrence of u

(and hence u occurs in x infinitely many times). Clearly, to show uniform recurrence

of a sequence, it is sufficient to check the mentioned condition only for all prefixes

bNow called generalized almost periodic, e.g., see [26].
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but not for all factors (and even for some increasing sequence of prefixes only).

Let A, B be finite alphabets. A mapping φ : A∗ → B∗ is called a morphism

if φ(uv) = φ(u)φ(v) for all u, v ∈ A∗. Obviously, a morphism is determined by

its values on single-letter words. A morphism is non-erasing if |φ(a)| ≥ 1 for each

a ∈ A. A morphism is k-uniform if |φ(a)| = k for each a ∈ A. A 1-uniform morphism

is called a coding.

In what follows, morphisms are mainly codings or endomorphisms (i.e., mor-

phisms from A∗ to itself for some alphabet A). For x ∈ AN denote

φ(x) = φ(x(0))φ(x(1))φ(x(2)) . . .

A morphism is called irreducible if for each a, b ∈ A there exists n such that

φn(a) contains b. A morphism is called primitive if there exists n such that for

each a, b ∈ A the word φn(a) contains b. Every primitive morphism is irreducible,

but the converse does not hold in general. Consider φ(0) = 1 and φ(1) = 0 as a

counterexample.

A word w ∈ A∗ is called φ-bounded if the sequence (w, φ(w), φ2(w), φ3(w), . . . )

is ultimately periodic. A word w ∈ A∗ is called φ-growing if |φn(w)| → ∞ as

n→ ∞. Obviously, every word from A∗ is either φ-bounded or φ-growing. Moreover,

a word is φ-bounded iff it consists of φ-bounded symbols only. A word w ∈ A∗ is

φ-eventually-erased if φn(w) = Λ for some n. Analogously, a word is φ-eventually-

erased iff it consists of φ-eventually-erased symbols only.

Divide A into two parts. Let Iφ be the set of all φ-growing (or φ-increasing)

symbols, and let Bφ be the set of all φ-bounded symbols. Define also Eφ ⊆ Bφ to

be the set of all φ-eventually-erased symbols.

A morphism φ : A∗ → A∗ is called growing if every letter in A is φ-growing,

i.e., A = Iφ.

Let φ(s) = su for some s ∈ A, u ∈ A∗. Then for all naturalm < n the word φn(s)

begins with the word φm(s), so φ∞(s) = limn→∞ φn(s) = suφ(u)φ2(u)φ3(u) . . . is

correctly defined. If u is not φ-eventually-erased, then φ∞(s) is infinite. In this case

we say that φ is prolongable on s. In other words, φ is prolongable on s if φ(s) starts

with s, and s is φ-growing. Sequences of the form h(φ∞(s)) for a coding h : A→ B

and a morphism φ prolongable on s are called morphic, of the form φ∞(s) are called

pure morphic.

The class of sequences of the form h(φ∞(s)) with φ being k-uniform coincides

with the class of so-called k-automatic sequences. Sequences that are k-automatic

for some k, are called simply automatic (this class was introduced in [5] under the

name of uniform tag sequences; see also [2]).

Note that there exist uniformly recurrent sequences that are not morphic (in

fact, the set of uniformly recurrent sequences has cardinality of the continuum

(e.g., see [15, 20]), while the set of morphic sequences is obviously countable), as

well as there exist morphic sequences that are not uniformly recurrent (an example

can be found below).

Our main goal is to study the decidability of the following problem:
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Input: Two finite alphabets A and B, a letter s ∈ A, a morphism φ : A∗ → A∗

prolongable on s, and a coding h : A → B.

Question: Is the morphic sequence h(φ∞(s)) uniformly recurrent?

Remark that recognizing the set of instances of the problem requires check-

ing whether s is φ-growing: this can be achieved in polynomial time according to

Lemma 6 below.

Before we start discussing our main problem mentioned above, let us show that

it is not difficult to formulate a criterion of recurrence for pure morphic sequences.

Proposition 1. Let A be an alphabet, s ∈ A, and let φ : A∗ → A∗ be a morphism

prolongable on s. The following four assertions are equivalent:

1) the pure morphic sequence φ∞(s) is recurrent;

2) the letter s occurs infinitely many times in φ∞(s);

3) the letter s occurs at least twice in φ∞(s);

4) the letter s occurs twice in φ(s) or there exists a letter a 6= s occurring in φ∞(s)

such that s occurs in φ(a).

Proof. Left to the reader.

The situation is not that easy in the case of uniform recurrence. First of all,

observe the following

Proposition 2. A sequence φ∞(s) is uniformly recurrent iff s occurs in this se-

quence infinitely many times with bounded distances.

Proof. In one direction the statement is obviously true by definition.

Suppose now that s occurs in φ∞(s) infinitely many times with bounded dis-

tances. Then for every m the word φm(s) also occurs in φ∞(s) infinitely many times

with bounded distances. But every word u occurring in φ∞(s) occurs in some prefix

φm(s) and thus occurs infinitely many times with bounded distances.

For a morphism φ : Σ∗

n → Σ∗

n, we define an incidence matrix Mφ, such that

(Mφ)ij is the number of occurrences of the symbol i into φ(j). One can easily check

that for each l ∈ N one has M l
φ = Mφl .

Clearly, a morphism φ is primitive iff for some l all the entries of M l
φ are positive.

For prolongable morphisms the notions of primitiveness and irreducibility coincide.

For a morphism φ : A∗ → A∗, we define a directed incidence graph Gφ of a

morphism φ. Let its set of vertices be A. InGφ edges go from b ∈ A to all the symbols

occurring in φ(b). Given a morphism φ, many properties of φ can be computed

from its incidence graph Gφ. However, Gφ does not contain information about the

number of occurrences of i into φ(j), that is, Gφ contains less information about

the morphism φ than Mφ.
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For φ∞(s) it can easily be found using Gφ which symbols from A actually occur

in this sequence. Indeed, these symbols form the set of all vertices that can be

reached from s. So from now on without loss of generality we assume that all the

symbols from A occur in φ∞(s).

A morphism is irreducible if and only if its graph of incidence is strongly con-

nected, i.e., there exists a directed path between every two vertices. For prolongable

morphisms this is also a criterion of primitiveness. Thus the following proposition

gives an effective polynomial-time criterion in the case of growing morphisms.

Proposition 3. Let A be an alphabet, let s ∈ A, and let φ : A∗ → A∗ be a growing

morphism prolongable on s. Then, φ∞(s) is uniformly recurrent if and only if φ is

primitive.

Proof. Assume that φ is primitive. Let n be a positive integer such that s occurs

in φn(a) for every a ∈ A. Let l denote the maximum length of φn(a) over all a ∈ A.

Every factor of φ∞(s) with length 2l contains at least one occurrence of s. It now

follows from Proposition 2 that φ∞(s) is uniformly recurrent.

Conversely, assume that φ is not primitive. There exists b ∈ A such that for

every n ≥ 0 the word φn(b) does not contain s. For every n ≥ 0, φn(b) is a factor

of φ∞(s). Since |φn(b)| → ∞ as n→ ∞, φ∞(s) is not uniformly recurrent.

Thus the famous Fibonacci sequence

f = 010010100100101001010 . . .

generated by the morphism 0 → 01, 1 → 0, as well as the Thue–Morse sequence

t = 011010011001011010010110 . . .

generated by the morphism 0 → 01, 1 → 10, are uniformly recurrent, as generated

by primitive morphisms.

However when we generalize this case even to non-erasing morphisms, it is not

sufficient to consider only the incidence graph or even the incidence matrix, as it

can be seen from the following example.

Let φ1 be as follows: 0 → 01, 1 → 120, 2 → 2, and φ2 be as follows: 0 → 01,

1 → 210, 2 → 2. They generate sequences

φ∞1 (0) = 01120120201120201201120 . . . and φ∞

2 (0) = 01210221001222100101210 . . .

These two morphisms have identical incidence matrices, but φ∞

1 (0) is uniformly

recurrent, while φ∞2 (0) is not. Indeed, in φ∞2 (0) there are arbitrary long segments

of the form 222. . . 22, so φ∞2 (0) is not uniformly recurrent (but recurrent). There

is no such problem in φ∞1 (0). Since 0 occurs in both φ1(0) and φ1(1), and 22 does

not occur in φ∞1 (0), it follows that 0 occurs in φ∞

1 (0) with bounded distances. Thus

φ∞1 (0) is uniformly recurrent by Proposition 2. See Theorem 4 for a general criterion

of uniform recurrence in the case of pure morphic sequences.
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3. Pure Morphic Sequences

Here we consider morphic sequences of the form φ∞(s). In Theorem 4 we present

a compact criterion of uniform recurrence. Theorem 7 gives more effective version

that can be checked algorithmically in polynomial time.

Theorem 4. Let A be an alphabet, s ∈ A, and let φ : A∗ → A∗ be a morphism

prolongable on s. The pure morphic sequence φ∞(s) is uniformly recurrent iff it

satisfies the following two properties:

1) for every φ-growing letter a occurring in φ∞(s), there exists an integer n ∈ N

such that s occurs in φn(a), and

2) only finitely many φ-bounded words are factors of φ∞(s).

Proof. ⇒. Assume that φ∞(s) is uniformly recurrent. Then there exists a positive

integer l such that s occurs in every l-length factor of φ∞(s).

1) Let a be a φ-growing letter occurring in φ∞(s). For every n ∈ N, φn(a) is a

factor of φ∞(s), and if n is large enough, then φn(a) has length ≥ l. Hence, s occurs

in φn(a) for all n large enough.

2) Since letter s is φ-growing, s cannot occur in any φ-bounded factor of φ∞(s).

Hence, all φ-bounded factors of φ∞(s) have lengths smaller than l.

⇐. Assume that both properties 1) and 2) hold. Property 1) implies that there

exists a positive integer n such that for every φ-growing letter a occurring in φ∞(s),

s occurs in φn(a). According to Property 2), there exists a positive integer M such

that every φ-bounded factor of φ∞(s) has length smaller than M . Let K denote the

maximum length of φn(a) over all a ∈ A.

Let w be a factor of φ∞(s) with length KM + K. There exists an M -length

factor v of φ∞(s) such that φn(v) is a factor of w. Since v is longer than every

φ-bounded factor of φ∞(s), some φ-growing letter a occurs in v. Hence, s occurs in

φn(a), φn(a) is a factor of φn(v), and φn(v) is a factor of w. It follows that s occurs

in w.

We have thus shown that s occurs in every factor of φ∞(s) with length KM+K,

and thus φ∞(s) is uniformly recurrent according to Proposition 2.

Now we explain how to get a polynomial-time criterion. First in Proposition 5 we

give different reformulations of Property 2) from Theorem 4. Then we reformulate

the uniform recurrence criterion in such a way that it can easily be checked in

polynomial time.

Proposition 5 (Ehrenfeucht, Rozenberg [9]) Let A be an alphabet, s ∈ A, and

let φ : A∗ → A∗ be a morphism prolongable on s. The following three properties are

equivalent.

1) Infinitely many φ-bounded words are factors of φ∞(s).

2) There exist a natural n, a letter a occurring in φ∞(s), and two words u, v ∈ A∗

satisfying conditions:
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(i) u is not φ-eventually-erased,

(ii) u is φ-bounded, and

(iii) φn(a) = uav or φn(a) = vau.

3) There exists a non-empty φ-bounded word w such that wn is a factor of φ∞(s)

for every n ∈ N.

Proof plan. 3) ⇒ 1) is straightforward. 1) ⇒ 2) was proved in [9]. 2) ⇒ 3) is easy.

For a morphism φ : A∗ → A∗, recall from Section 2 what the sets Iφ, Bφ, Eφ
are. In fact, we can effectively determine them given φ.

Lemma 6. Given an alphabet A and a morphism φ : A∗ → A∗, the sets Iφ, Bφ,

and Eφ are computable in poly(n, k)-time where n = |A| and k = maxb∈A |φ(b)|.

Proof. First, consider an equivalence relation “≡” on vertices of Gφ: a ≡ b iff a can

be reached from b, and vice versa. Obviously, if a ≡ b, then |φm(a)| = Θ(|φm(b)|)

as m → ∞. Construct a new graph Hφ with vertices being equivalence classes of

“≡”. An edge goes from C to D in Hφ if ∃a ∈ C ∃b ∈ D such that φ(a) contains b.

Define for each vertex C in Hφ the number κC = max{the number of occurrences

of symbols from C in φ(a) : a ∈ C}. Define Si = {D in Hφ : max{κC : C can be

reached fromD} = i}. Obviously,Hφ, all κC , and Si can be computed in polynomial

time.

It is not difficult to see that ∀i ≥ 2 ∀C ∈ Si ∀a ∈ C |φm(a)| grows exponentially

as m→ ∞, and thus a ∈ Iφ. Also, every element of S0 is a singleton included in Eφ.

Note that for every strongly connected component C of Gφ, κC = 1 if and only

if the subgraph of Gφ induced by C is a directed cycle.

Now consider the subgraph of Hφ induced by S1. Clearly, ∀C ∈ S1 ∀a ∈ C

a /∈ Eφ. Let S1 = U ∪ V where U = {C ∈ S1 : κC = 0}, V = {C ∈ S1 : κC = 1}.

Further, let V = X ∪ Y where X = {C ∈ V : some other D ∈ V can be reached

from C}, Y = V \X . It is not difficult to see that
⋃

C∈X C ⊆ Iφ,
⋃

C∈Y C ⊆ Bφ.

Further, notice that every C ∈ U is a singleton. If some D ∈ X can be reached from

{a} ∈ U , then a ∈ Iφ, otherwise a ∈ Bφ.

Obviously, everything here can be checked in polynomial time.

The presented proof of Lemma 6 is essentially taken from [8] by simplifying a

general argument from there.

Let φ : A∗ → A∗ be a morphism. Recall that a word is φ-eventually-erased iff it

consists of φ-eventually-erased symbols. Thus one can easily check whether a given

word is φ-eventually-erased.

Construct a labeled prefix graph Lφ. Its set of vertices is Iφ. From each vertex b

exactly one edge goes out. To construct this edge, find a representation φ(b) = ucv,

where c ∈ Iφ, u is the maximal prefix of φ(b) containing only symbols from Bφ. It
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follows from the definitions of Iφ and Bφ that u does not coincide with φ(b), that

is why this representation is correct. Then construct in Lφ an edge from b to c and

write u on it.

Analogously we construct a suffix graph Rφ. (In this case we find a representation

φ(b) = vcu where u ∈ B∗

φ, c ∈ Iφ, and write u on the edge from b to c.)

Now we formulate a constructive version of the criterion given in Theorem 4.

Theorem 7. Let A be an alphabet, s ∈ A, and let φ : A∗ → A∗ be a morphism pro-

longable on s. A sequence φ∞(s) is uniformly recurrent iff it satisfies the following

two properties:

1) Gφ restricted to Iφ is strongly connected, and

2) in both graphs Lφ and Rφ, on each edge of each cycle, a φ-eventually-erased word

is written.

Recall that we assume all the symbols from A appear in φ∞(s).

Proof. Property 1) of this theorem is equivalent to Property 1) of Theorem 4.

Proposition 5 explains why the same is true with Properties 2).

In fact, the equivalence between Property 2) from Theorem 4 and Property 2)

from Theorem 7 was first noticed and proved in [18] for the case of non-erasing

morphism φ.

Let us consider the examples with φ1 and φ2 concluding Section 2. For φ ∈

{φ1, φ2}, Iφ = {0, 1} and Bφ = {2}. On every edge of Rφ in both cases Λ is written.

Almost the same is true for Lφ: the only difference is about the edge going from

1 to 1. In the case of φ1 an empty word is written on this edge, while in the case

of φ2 a word 2 is written. The word 2 is not eventually erased since its image is 2.

That is why φ∞1 (0) is uniformly recurrent, while φ∞

2 (0) is not.

Corollary 8. There exists a poly(n, k)-algorithm that decides whether φ∞(s) is

uniformly recurrent.

Proof. Conditions from Theorem 7 can easily be checked in polynomial time.

It also seems useful to formulate an explicit version of the criterion for the binary

case.

Corollary 9. For a morphism φ : {0, 1}∗ → {0, 1}∗ that is prolongable on 0, a

sequence φ∞(0) is uniformly recurrent iff one of the following conditions holds:

1) φ(0) contains only 0 and no 1;

2) φ(1) contains 0;

3) φ(1) = Λ;

4) φ(1) = 1 and φ(0) = 0u0 for some word u.
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The example with φ such that φ(0) = 0010, φ(1) = 1 (the Chacon morphism,

see [10, 28]), non-trivially illustrates Case 4 of Corollary 9: φ is not primitive, φ∞(0)

is not ultimately periodic, and φ∞(0) is uniformly recurrent.

4. Uniform Morphisms

Now we deal with automatic sequences. In Subsection 4.1 we present a polynomial-

time criterion of uniform recurrence in this case. Final version of the criterion is

in Theorem 18. Theorem 19 is to explain why the criterion from Theorem 18 is

polynomial-time. In Subsection 4.2 we are discussing a (non-uniform) recurrence

criterion as a related problem.

Suppose we have two alphabets A and B, a morphism φ : A∗ → A∗, a coding

h : A → B, and s ∈ A, such that |A| = n, |B| ≤ n, ∀b ∈ A |φ(b)| = k, and φ(s)

starts with s.

4.1. Uniform recurrence criterion

Here we are interested in whether h(φ∞(s)) is uniformly recurrent.

For each l ∈ N define an equivalence relation on A: b ∼l c iff h(φl(b)) = h(φl(c)).

We can easily generalize this relation to A∗: u ∼l v iff h(φl(u)) = h(φl(v)). In fact,

this means |u| = |v| and u(i) ∼l v(i) for all i, 1 ≤ i ≤ |u|.

Let R = R(h, φ) be the number of all possible relations ∼l.

Lemma 10. R ≤ 2n
2

.

Proof. The total number of binary relations over a set with n elements is not

greater than 2n
2

.

Some properties of (∼l)l∈N are given below.

Lemma 11. If ∼r equals ∼s, then ∼r+p equals ∼s+p for all p.

Proof. Indeed, suppose ∼r equals ∼s. Then b ∼r+1 c iff φ(b) ∼r φ(c) iff φ(b) ∼s
φ(c) iff b ∼s+1 c. So if ∼r equals ∼s, then ∼r+1 equals ∼s+1, which implies the

lemma statement.

This lemma means that the sequence (∼l)l∈N turns out to be ultimately periodic

with the sum of a period and a preperiod not greater than R. Thus we obtain the

following

Lemma 12. For some p, q ∈ N with p+ q = R we have for all i and all t ≥ p that

∼t equals ∼t+iq.

The following question has independent interest and is not directly connected

with our considerations, while its partial solutions might help in various investiga-

tions of automatic sequences.
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Question 13. What are non-trivial lower and upper bounds for R = R(h, φ), de-

pending on φ and h? In particular, may R be exponentially large in terms of n?

And more generally, describe the behavior of (∼l)l∈N, depending on φ and h.

Let us remark that R ≤ Bn where Bn is the n-th Bell number, i.e., the number

of all possible equivalence relations on a finite set with n elements. It is known that

Bn = 2O(n logn), but this bound is not necessary for our purpose (Lemma 10 is

sufficient).

The following proposition is also useful. It was first proved in [5]. For x ∈ AN,

y ∈ BN define x× y ∈ (A×B)N such that (x × y)(i) = 〈x(i), y(i)〉.

Proposition 14. If x is uniformly recurrent and y is periodic, then x × y is uni-

formly recurrent.

Proof. Let us prove the proposition for y of the form y = 012 . . . (m−1)012 . . . (m−

1)01 . . . over Σm. Then the proposition in full generality would follow by applying

a coding.

We say that u occurs in x in position i modulo m, where 0 ≤ i ≤ m− 1, if there

exists q ∈ N such that u = x[mq+ i,mq+ i+ |u| − 1]. Our aim is to prove that if u

occurs in x in position k modulo m, then this happens infinitely many times with

bounded distances.

Let C ⊆ Σm be the set of all i such that u occurs in x in position i modulo m at

least once, and let w = x[0, k] be a prefix of x such that for each i ∈ C there exists

an occurrence of u in position i modulo m in w. Let x[p, q] be an occurrence of w

in x. Then for each i ∈ C the word u occurs in x in position i+p (mod m) modulom

somewhere between positions p and q. Thus D = {i+ p (mod m) : i ∈ C} ⊆ C by

definition of C, but |D| = |C|, hence D = C.

Thus u occurs in position k modulo m in each occurrence of w in x. But x is

uniformly recurrent, therefore w occurs in x infinitely many times with bounded

distances.

Now let us try to get a criterion which we could check in polynomial time.

Notice that the situation is much more difficult than in the pure case. In particular,

the analogue of Proposition 2 for non-pure case does not hold in general. The

primitiveness notion also does not play such a role as in pure case. For instance,

if φ : Σ∗

3 → Σ∗

3 is as follows: φ(0) = 02, φ(1) = 12, φ(2) = 21, and h : Σ3 → {1, 2}

is as follows: h(0) = h(1) = 1, h(2) = 2, then φ∞(0) = 0221211221121221 . . . , and

h(φ∞(0)) = 1221211221121221 . . . is non-ultimately-periodic uniformly recurrent

(since it is Thue–Morse of 1 and 2), while φ is not primitive. Nevertheless it is

worth mentioning that a uniformly recurrent automatic sequence can be generated

by a primitive uniform morphism (see [5]).

We move step by step to the appropriate version of the criterion reformulating

it several times.
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The next proposition is quite obvious and follows directly from the definition of

the uniform recurrence, since all h(φm(s)) are prefixes of h(φ∞(s)).

Proposition 15. A sequence h(φ∞(s)) is uniformly recurrent iff for all m the word

h(φm(s)) occurs in h(φ∞(s)) infinitely often with bounded distances.

And now a bit more complicated version. An occurrence u = x[i, j] in x is

p-aligned if p divides i.

Proposition 16. A sequence h(φ∞(s)) is uniformly recurrent iff for all m the sym-

bols that are ∼m-equivalent to s occur in φ∞(s) infinitely often with bounded dis-

tances.

Proof. ⇐. If the distance between two consecutive occurrences in φ∞(s) of symbols

that are ∼m-equivalent to s is not greater than t, then the distance between two

consecutive occurrences of h(φm(s)) in h(φ∞(s)) is not greater than tkm.

⇒. Suppose h(φ∞(s)) is uniformly recurrent. Let y = 012 . . . (km − 2)(km −

1)01 . . . (km − 1)0 . . . be a periodic sequence with a period km. Then by Proposi-

tion 14 the sequence h(φ∞(s)) × y is uniformly recurrent, which means that the

distances between consecutive km-aligned occurrences of h(φm(s)) in h(φ∞(s)) are

bounded. It only remains to notice that if h(φ∞(s))[ikm, (i+1)km−1] = h(φm(s)),

then φ∞(s)(i) ∼m s.

Let Ym be the following statement: symbols that are ∼m-equivalent to s occur

in φ∞(s) infinitely often with bounded distances.

Suppose for some T that YT is true. This implies that h(φT (s)) occurs in

h(φ∞(s)) with bounded distances. Therefore for all m ≤ T the word h(φm(s))

occurs in h(φ∞(s)) with bounded distances, since h(φm(s)) is a prefix of h(φT (s)).

Thus we do not need to check the statements Ym for all m, but only for all m ≥ T

for some T .

Furthermore, it follows from Lemma 12 that it is sufficient to check the only one

such statement, as in the following

Proposition 17. For all r ≥ R: a sequence h(φ∞(s)) is uniformly recurrent iff

the symbols that are ∼r-equivalent to s occur in φ∞(s) infinitely often with bounded

distances.

And now the final version of our criterion.

Theorem 18. For all r ≥ R: a sequence h(φ∞(s)) is uniformly recurrent iff there

exists m such that for all b ∈ A some symbol that is ∼r-equivalent to s occurs in

φm(b).

Indeed, if the symbols of some set occur with bounded distances, then they occur

in each km-aligned km-length segment for some sufficiently large m.

Now we explain how to check a condition from Theorem 18 in polynomial time.
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Theorem 19. There exists a polynomial-time algorithm deciding whether a given

automatic sequence h(φ∞(s)) is uniformly recurrent.

Proof. We need to show two things: first, how to choose some r ≥ R and to find

in polynomial time the set of all symbols that are ∼r-equivalent to s (and this is

a complicated thing keeping in mind that R might be exponentially large), and

second, how to check whether for some m the symbols from this set occur in φm(b)

for all b ∈ A.

Let us start with the second. Suppose we have found the set H of all symbols

that are ∼r-equivalent to s. For m ∈ N let us denote by P
(b)
m the set of all the

symbols that occur in φm(b). Our aim is to check whether there exists m such that

for all b we have P
(b)
m ∩H 6= ∅. First of all, observe that if ∀b P

(b)
m ∩H 6= ∅, then

∀b P
(b)
l ∩H 6= ∅ for all l ≥ m. Second, notice that the sequence of n-tuples of sets

(〈P
(b)
m 〉b∈A)∞m=0 is ultimately periodic (recall that n is the size of the alphabet A).

Indeed, the sequence (P
(b)
m )∞m=0 for each b is obviously ultimately periodic with

both period and preperiod not greater than 2n. Thus the period of (〈P
(b)
m 〉b∈A)∞m=0

is not greater than the least common multiple of that for (P
(b)
m )∞m=0, b ∈ A, and the

preperiod is not greater than the maximal that of (P
(b)
m )∞m=0, b ∈ A. So the period is

not greater than (2n)n = 2n
2

and the preperiod is not greater than 2n. This means,

by the first observation, that it is sufficient to choose one fixed m ≥ 2n
2

+ 2n and

then to compute 〈P
(b)
m 〉b∈A and to check intersections with H . Third, notice that

there is a polynomial-time procedure that given an incidence graph of a morphism

ψ (see Section 2 to recall what an incidence graph is) outputs an incidence graph

of a morphism ψ2. Thus after repeating this procedure n2 + 1 times we obtain a

graph by which we can easily find 〈P
(b)

2n2+1
〉b∈A. Note that 2n

2+1 > 2n
2

+ 2n.

Similar arguments are used in deciding our next problem. Here we present a

polynomial-time algorithm that finds the set of all symbols that are ∼r-equivalent

to s for some r ≥ R.

We recursively construct a series of graphs Ti. Let their common set of vertices

be the set of all unordered pairs {b, c} such that b, c ∈ A and b 6= c. Thus the

number of vertices is n(n−1)
2 . The set of all vertices connected with {b, c} in the

graph Ti we denote by Vi(b, c).

Define a graph T0. Let V0(b, c) be the set {{φ(b)(j), φ(c)(j)} | j =

1, . . . , k, φ(b)(j) 6= φ(c)(j)}. In other words, b ∼l+1 c if and only if x ∼l y for

all {x, y} ∈ V0(b, c).

Thus b ∼2 c if and only if for all {x, y} ∈ V0(b, c) and for all {z, t} ∈ V0(x, y)

we have z ∼0 t. For the graph T1 let V1(b, c) be the set of all {x, y} such that there

is a path of length 2 from {b, c} to {x, y} in T0. The graph T1 has the following

property: b ∼2 c if and only if x ∼0 y for all {x, y} ∈ V1(b, c). And even more

generally: b ∼l+2 c if and only if x ∼l y for all {x, y} ∈ V1(b, c).

Now we can repeat the operation made with T0 to obtain T1. Namely, in T2 let

V2(b, c) be the set of all {x, y} such that there is a path of length 2 from {b, c} to

{x, y} in T1. Then we obtain: b ∼l+4 c if and only if x ∼l y for all {x, y} ∈ V2(b, c).
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In the same way all Ti are constructed. More explicitly, Vi(b, c) is the set of all

pairs of the form
{

φ2i

(b)(j), φ2i

(c)(j)
}

with 1 ≤ j ≤ k2i

and φ2i

(b)(j) 6= φ2i

(c)(j).

Remark also that φ2i

(b) = φ2i

(c) if and only if {b, c} has out-degree 0 in Ti.

It follows from Lemma 10 that log2R ≤ n2. Thus after we repeat our procedure

n2 times, we will obtain the graph Tn2 such that b ∼2n2 c if and only if x ∼0 y

for all {x, y} ∈ Vn2(b, c). Recall that x ∼0 y means h(x) = h(y), so now we can

compute the set of symbols that are ∼2n2 -equivalent to s.

4.2. Recurrence criterion

Here we are discussing recurrence criterion for automatic sequences.

It is not difficult to see that all the arguments of Subsection 4.1 can be applied

to the recurrence case after appropriate changes. The only note is that while prov-

ing analogue of Proposition 16 we should use the following statement instead of

Proposition 14:

Proposition 20. If x is recurrent and y is periodic, then x× y is recurrent.

The proof of Proposition 20 is absolutely analogous to the proof of Proposition 14

and is left to the reader.

Now we can formulate the recurrence criterion for morphic sequences, analo-

gously to Proposition 17:

Proposition 21. For all r ≥ R: a sequence h(φ∞(s)) is recurrent iff the symbols

that are ∼r-equivalent to s occur in φ∞(s) infinitely many times.

The symbols that are ∼r-equivalent to s occur in φ∞(s) infinitely often if and

only if some symbol that is ∼r-equivalent to s occurs infinitely often.

Lemma 22. The following problem can be solved in polynomial time: given an

alphabet A, a morphism φ : A∗ → A∗, and two symbols s, a ∈ A such that φ is

prolongable on s, decide whether a occurs infinitely many times in φ∞(s).

Proof. Compute u ∈ A∗ such that φ(s) = su. Let C denote the set of all letters

occurring in u. The sequence φ∞(s) contains infinitely many occurrences of a if and

only if there exists c ∈ C such that a occurs in φn(c) for infinitely many integers

n ≥ 0. For each c ∈ C, compute the set Ac of all b ∈ A such that there exist a path

from c to b and a path from b to a in Gφ. The symbol a occurs in φn(c) for infinitely

many integers n ≥ 0 if and only if the subgraph of Gφ induced by Ac contains a

cycle.

In fact, the decidability without time constraints in Lemma 22 easily follows

from the monadic logic approach, see Section 6.

Thus we obtain the following
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Corollary 23. There exists a polynomial-time algorithm deciding whether a given

automatic sequence is recurrent.

5. Factor Complexity

A factor (or subword) complexity is a natural combinatorial characteristic of words.

A factor complexity of x ∈ AN is a function px : N → N where px(n) is the number

of all n-length factors occurring in x. For a survey on factor complexity see, e.g., [1],

[10], or [2], Chapter 10. Denote by F (x) the set of all factors of a sequence x, by

Fn(x) the set of all n-length factors of a sequence x.

A result from Pansiot [21] states that the factor complexity of arbitrary pure

morphic sequence adopts one of the five following asymptotic behaviors: O(1), Θ(n),

Θ(n log logn), Θ(n logn) or Θ(n2). In fact, the factor complexity of ultimately peri-

odic sequences is O(1), while for non-periodic sequences it is always Ω(n) according

to [19]. It is also known that the factor complexity of automatic sequences is O(n)

(see [5]).

The factor complexity of uniformly recurrent sequences might be very large, for

instance, exponential: for every α such that 0 < α < 1 there exists a uniformly

recurrent sequence over m letters with factor complexity larger than or equal to

mαn (see [11] or [24]). Notice that α can not be put equal to 1 here. Indeed, for

every letter a and every uniformly recurrent sequence x 6= aaaa . . . , an occurs in x

for at most finitely many n ∈ N.

However, for uniformly recurrent morphic sequences the situation is much easier.

Theorem 24. If x is a uniformly recurrent morphic sequence, then px(n) = O(n).

The proof of the theorem is in the following several lemmas. Probably, the

keynote lemma is Lemma 30. Other important lemmas are Lemma 25, Lemma 27,

and Lemma 28. Lemmas 26 and 29 are technical.

Lemma 25. If x is a pure morphic sequence generated by a primitive morphism,

then px(n) = O(n).

Lemma 25 is explicitly presented in [29] or in [2] (Theorem 10.4.12), but also

follows from the results of [21].

Lemma 26. Let A, B be two alphabets, let f : A∗ → B∗ be a non-erasing mor-

phism, and let M be the maximal length of f(a) over all a ∈ A. Then pf(x)(n) ≤

Mpx(n) for every infinite word x ∈ AN and n ∈ N.

Lemma 26 can be found in [4] or in [2] (Theorem 10.2.4).

Lemma 27 (Pansiot [21]) Let A be an alphabet, s ∈ A, and let φ : A∗ → A∗ be a

morphism prolongable on s. Assume that the set of all φ-bounded factors of φ∞(s)

is finite. Then φ∞(s) can be written as the image under a non-erasing morphism of

a pure morphic sequence generated by a growing morphism.
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We prove this lemma for completeness (especially because in [21] it is published

in French).

Proof. Recall that Iφ is the set of φ-growing letters, and Bφ is the set of φ-bounded

letters (see Section 2).

Let an alphabet C consist of all symbols [twt′] where twt′ is a factor of x =

φ∞(s), t, t′ ∈ Iφ, and w ∈ B∗

φ. According to the conditions of the theorem, C is

finite.

Define ψ : C∗ → C∗ as follows:

ψ([twt′]) = [t1w1t2][t2w2t3] . . . [tkwktk+1],

where φ(tw) = w0t1w1t2w2 . . . tkw
′

k, φ(t′) starts from w′′

k tk+1, and wk = w′

kw
′′

k , with

ti ∈ Iφ and wi, w
′

k, w
′′

k ∈ B∗

φ. It can easily be seen that ψ is growing. Define also

g : C∗ → A∗ as follows:

g([twt′]) = tw.

Let x be represented as t0w0t1w1t2w2 . . . , where ti ∈ Iφ, wi ∈ B∗

φ; clearly

s = t0 is φ-growing. It can easily be seen that φi(s) is a prefix of g(ψi([t0w0t1]))

for each i ≥ 1 (therefore in particular ψ is prolongable on [t0w0t1]). Thus φ∞(s) =

g(ψ∞([t0w0t1])).

Lemma 28. For every two infinite words x and y, if x is uniformly recurrent and

F (y) ⊆ F (x), then F (y) = F (x).

Lemma 28 is a well-known minimality property of uniformly recurrent sequences,

e.g., see [16].

Lemma 29. Let B be an alphabet and let φ : B∗ → B∗ be a growing morphism.

There exist a natural n and a letter t ∈ B such that φn is prolongable on t.

Proof. Let b be an element of B. Since B is finite, there exist i, j with i < j such

that φi(b) and φj(b) start with the same letter, say t. Hence φj−i(t) begins with t.

Since φ is growing, φj−i is growing too. Thus φj−i is prolongable on t.

Lemma 30. For every pure morphic sequence x generated by a growing morphism,

there exists a pure morphic sequence y generated by a primitive morphism such that

F (y) ⊆ F (x).

Proof. Suppose x = φ∞(s) where φ is growing. Let B be a strongly connected

component in the incidence graph Gφ with no outgoing edges. Then φ restricted to

B is a growing irreducible morphism from B∗ to B∗ (here we identify B with its

set of vertices). According to Lemma 29, there exist t ∈ B and n such that φn is

prolongable on t. If φn is primitive, then we are done and (φn)
∞

(t) is a suitable

choice for y, since t occurs in x and therefore (φn)m(t) for all m occur in x.
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Suppose φn is not primitive. This means that B is a proper subgraph of Gφ,

because otherwise φn is both prolongable and irreducible, and thus primitive. Now

let us denote by ψ the morphism φn restricted to B, and repeat the procedure for

ψ and Gψ (which is actually B): find some strongly connected component of Gψ
with no outgoing edges, consider an appropriate power of ψ which is prolongable

on some letter, and so on.

Thus on each step of this argument we either find a suitable y, or decrease the

size of the current subgraph. So we are done by induction.

Now we are ready to prove Theorem 24.

Proof of Theorem 24. Suppose x = h(φ∞(s)) is a uniformly recurrent morphic

sequence with φ : A∗ → A∗, h : A→ B. There are two possibilities.

1) There exist infinitely many φ-bounded factors in φ∞(s). Then by Proposi-

tion 5 there exists a non-empty w ∈ A∗ such that wn occurs in φ∞(s) for each n.

Therefore (h(w))n occurs in x for each n, and hence x is periodic, which means its

complexity is O(1).

2) There are only finitely many φ-bounded factors in φ∞(s). Then by Lemma 27

φ∞(s) can be represented as φ∞(s) = g(ψ∞(t)) for some morphisms ψ : C∗ → C∗

and g : C∗ → A∗ with ψ growing and g non-erasing. By Lemma 30 there exists a pure

morphic sequence y generated by a primitive morphism such that F (y) ⊆ F (ψ∞(t)).

Hence F (h(g(y))) ⊆ F (x), but x is uniformly recurrent, therefore by Lemma 28 we

have F (h(g(y))) = F (x). Thus for some constant M

px(n) = ph(g(y))(n) ≤Mpy(n) = O(n),

where the middle inequality holds by Lemma 26 and the last equality holds by

Lemma 25.

Interestingly, almost nothing was known so far about factor complexity of ar-

bitrary morphic sequences. Probably, the only progress was done in [22], where in-

finitely many examples with complexity of the form Θ(n1+ 1
k ) for all k = 1, 2, 3, . . .

were constructed.

However, recently the following conjecture about the complexity of morphic

sequences in general was formulated.

Conjecture 31 (Devyatov [8]) The factor complexity of an arbitrary mor-

phic sequence adopts one of the following asymptotic behaviors: O(1), Θ(n),

Θ(n log logn), Θ(n logn), Θ(n2) or Θ(n1+ 1
k ) for some k ∈ N.

Moreover, the following result partially solving Conjecture 31, was presented

in [8]: the factor complexity of an arbitrary morphic sequence is either of the form

Θ(n1+ 1
k ) for some k ∈ N, or of the form O(n logn). So it only remains to investigate

the case of O(n log n) to solve Conjecture 31.
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6. Arbitrary Morphic Sequences

Here we give some remarks concerning the general case.

Still it is not known whether the problem of determining uniform recurrence of

arbitrary morphic sequence is decidable, though we believe that it is true.

Conjecture 32. It is decidable, given an arbitrary morphic sequence, whether this

sequence is uniformly recurrent or not.

Proposition 33 given below in a sense supports Conjecture 32.

A very natural characteristic of a uniformly recurrent sequence is a uniform

recurrence regulator. An uniform recurrence regulator of a uniformly recurrent se-

quence x is a function f : N → N such that every n-length factor u of x occurs

in each f(n)-length factor of x, and f(n) is chosen to be minimal satisfying this

condition. So the uniform recurrence regulator somehow regulates how (uniformly)

recurrent a sequence is.

Proposition 33. Given a morphic sequence, one can compute its uniform recur-

rence regulator whenever this sequence is uniformly recurrent.

Proof. First, notice that the set of factors of a morphic sequence is decidable. And

even more, there exists an algorithm that given a morphic sequence and a word,

decides whether this word occurs in the sequence. (For instance, this follows from

the fact that the monadic theory of a morphic sequence is decidable — see below.

There should be an explicit proof as well.)

Second, if a uniformly recurrent sequence is computable and its set of factors

is decidable, then the uniform recurrence regulator of this sequence is computable.

Indeed, suppose we want to check whether l ≥ f(n). For that we find all n-length

factors and all l-length factors, we can do it due to decidability of the set of factors.

Then we check whether each of l-length factors contains all n-length factors. If so,

then l ≥ f(n). Thus to find precise value of f(n), we can check all natural numbers

starting from n until some of them works.

Note that the monadic theory of a morphic sequence is decidable, e.g., see [3].

In fact, it also follows from [7] where it is shown that a finite transduction of a

morphic sequence is morphic (see also [2], Theorem 7.9.1). (See more on monadic

theories in context of combinatorics on words, e.g., in [31, 30, 34].)

The property of recurrence for x ∈ AN can be written as

(for each prefix u of x) (there are infinitely many occurrences of u in x).

The property “there are infinitely many occurrences of u in x” for morphic x can be

algorithmically checked, since this property can be expressed in monadic language.

Probably, the decidability of this property can also be proved directly (generalizing

Lemma 22).
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Suppose now that we have an oracle for halting problem, so-called 0′-oracle,

and consider computations with this oracle. There exists the following simple de-

scription of 0′-computable functions. A (not necessarily total) function f : N → N

is 0′-computable iff there exists a computable total function F : N × N → N such

that f(x) = limn→∞ F (x, n). The notion of 0′-computability (as well as the no-

tion of computability itself) can be generalized to functions on objects that can be

encoded by natural numbers. One can also define the notions of 0′-decidable and

0′-enumerable sets. In particular, every enumerable set is 0′-decidable (while the

converse does not hold in general). More details on 0′-computations can be found,

e.g., in [32].

The problem of determining recurrence for morphic sequences is 0′-decidable.

Indeed, suppose we have a morphic sequence. Let us check for each prefix whether

there are infinitely many occurrences of this prefix in the sequence. If we find some

prefix for which it does not hold, we output the negative answer. Otherwise, if we

never find such a bad prefix (that is what we can check using 0′-oracle), then we

output a positive answer.

Thus we obtain the following

Proposition 34. The problem of determining recurrence for morphic sequences is

0′-decidable.

It is not difficult to see that the problem of determining uniform recurrence for

morphic sequences can be written as

(for each prefix u of x) (there exists l) such that (u occurs in each l-length

segment of x),

where the last property can be algorithmically checked for morphic sequences again

by monadic logic reasons (and again probably a direct proof of this fact exists).

However, it turns out that this problem can be simplified.

Proposition 35. The problem of determining uniform recurrence for morphic se-

quences is 0′-decidable.

Proof. It follows from a careful examination of Section 5 that, given a morphic

sequence x, one can compute a morphic sequence y satisfying the following three

properties:

1) y is either periodic or generated by a primitive morphism,

2) F (y) ⊆ F (x), and

3) x is uniformly recurrent if and only if F (x) ⊆ F (y).

Thus, uniform recurrence of x can be expressed as

(for each factor u of x) (u occurs in y).
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7. Conclusion

Conjecture 32 remains the main open problem here. We solved it in the two par-

ticular cases of pure morphic sequences and automatic sequences by presenting the

polynomial-time algorithms. Other particular cases also might be of great interest.

Probably the most important is the case of h(φ∞(s)) with φ growing, though this

case does not seem to immediately imply Conjecture 32 in its general form. Notice

that Theorem 7.5.1 from [2] allows us to represent an arbitrary morphic sequence

as h(φ∞(s)) with φ non-erasing, so it is sufficient to solve Conjecture 32 only for

non-erasing morphisms.

Besides determining uniform recurrence for morphic sequences, similar problems

can be formulated for variations with periodicity and uniform recurrence: ultimate

periodicity, generalized uniform recurrence (called generalized almost periodicity

in [26] and almost periodicity in [18, 20]), ultimate uniform recurrence, recurrence,

ultimate recurrence, etc. If one notion is a particular case of another, it does not

mean that corresponding criterion for the former is more difficult (or less difficult)

than for the latter.

In this context the following problem can be stated.

Question 36. Given two morphic sequences, can one determine whether their sets

of subwords are equal?

Besides equality, the variant of Question 36 for inclusion can be formulated as

well. The positive answer would imply the positive solution of Conjecture 32, as we

managed to show in Section 6 (while the converse implication does not seem to hold).

Question 36 might be connected with the difficult open problem of determining

equality of two given morphic sequences (see [2], Section 7.11, Problem 1; it was

shown to be decidable in pure morphic case, see [6, 14]).

Of course, to continue investigations about factor complexity is also the problem

of great interest. In particular, one can try to continue investigations about factor

complexity for morphic sequences of some special types.
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[29] M. Queffélec. Substitution Dynamical Systems—Spectral Analysis, volume 1284 of
Lecture Notes in Mathematics. Springer-Verlag, 1987.

[30] A. L. Semenov. Logical theories of one-place functions on the set of natural numbers.
Mathematics of USSR–Izvestia, 22(3):587–618, 1983.

[31] A. L. Semenov. Decidability of monadic theories. In Proceedings of MFCS’84, volume
176 of Lecture Notes in Computer Science, pages 162–175. Springer-Verlag, 1984.

[32] A. Shen and N. K. Vereshchagin. Computable functions, volume 19 of Student Math-
ematical Library. AMS, 2003. Translated from Russian: N. Vereshchagin, A. Shen.
Computable functions. MCCME, 3rd edition, 2008.

[33] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company:
Boston, 2nd edition, 2005.

[34] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191. Elsevier, 1990.


