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Abstract

In this paper we study “information” in infinite words. This very general and informal
notion is formalized in several very different ways. First, we study algorithms on infinite words,
mainly in connection with almost periodicity. Namely, using the technics of combinatorics on
words, we show that several problems about infinite words are not decidable algorithmically (or
these words do not contain enough information to solve these problems). Then we obtain some
corollaries about monadic theories on natural numbers, showing some characteristics of words
to be inexpressible in monadic language. Finally we use the notion of Kolmogorov complexity
of finite objects to somehow describe information in infinite words. A lot of open questions are
raised and discussed.

1 Introduction

Very different approaches of this paper can be united under the aim to study how much information
and information of what kind is contained in an infinite word. The paper is mainly organized as
a discussion of notions and open questions, but some interesting results are also presented. Proofs
are usually omitted due to (extended) abstract style.

Lots of interesting algorithmic questions naturally appear in connection with almost periodicity,
i. e., whether one can check some property or find some characteristic algorithmically being given
a word. Further, we mainly deal with the case when the answers on these questions are negative.
In Section 3 we prove that some properties are not effective in algorithmic sense. In other words,
we show that under some natural conditions we do not have enough information about a word to
find some interesting property or characteristic.

In Section 4 we obtain some corollaries from the results of Section 3 showing the limited power
of monadic language to express things about words.

In Section 5 we try to use the widely known and fundamental notion of Kolmogorov complexity
of finite words to study the notion of information in infinite word.

2 Preliminaries

We use basic notions and notations of combinatorics on words without definitions. The introduction
to the area can be found in [2] or [10]. Nevertheless remind one of the notions which is of the main
importance for us. We say that a sequence of words u,, (finite of infinite) tends to an infinite word
x and write limy, 00 uy, = , if Vi In Ym > n up, (i) = ().
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An infinite word z is periodic if for some T we have z(i) = (i + T) for each ¢ € N. This T is
called a period of z. The class of all infinite periodic words we denote by P. Let us consider some
extensions of this class.

A word z is called almost periodic (=uniformly recurrent) if for any factor u of x there exists a
number [ such that any factor of x of length [ contains at least one occurrence of u (and therefore
u occurs in z infinitely many times). Obviously, to show almost periodicity of a word it is sufficient
to check the mentioned condition not for all factors, but only for some infinite number of prefixes.
Denote by AP the class of all almost periodic words. This class was introduced by Morse in [11, 12]
and earlier works and is widely known in combinatorics on words (e. g., see [3]).

A word z is eventually almost periodic if some its suffix is almost periodic. The class of all
eventually almost periodic words we denote by £AP. This class was studied in [16].

A word z is called generalized almost periodic if for any factor u of x occurring in it infinitely
many times there exists a number [ such that any factor of z of length [ contains at least one
occurrence of u. We denote the class of all generalized almost periodic words by GAP. This class
was introduced by Semenov in [21] and also was studied in [13].

Suppose € EAP. Denote by pr(z) the minimal n such that z[n,o00) € AP. Thus for each
m > pr(z) we have z[m,o00) € AP.

A function R;: N — N is an almost periodicity requlator of a word x € GAP, if
(1) every string of length n occurring in z infinitely many times, occurs in any factor of length
Rz(n) in z, and
(2) any string of length n occurring finitely many times in z, does not occur in z[R,(n), 00).

The latter condition is important only for words in GAP \ AP. Notice that regulator is not unique:
any function greater than regulator is also a regulator.

Obviously, P C AP C EAP C GAP. In fact, all these inclusions are strict. For instance the
famous Thue-Morse word z7 = 0110100110010110... (see [24, 1] or Section 3) is an example of
an element in AP but not in P (moreover, AP has cardinality continuum while P is countable,
see [13] for proofs). The inequality AP C EAP is obvious. The inequality EAP C GAP was proved
in [16] (moreover it was proved that GAP \ EAP has cardinality continuum).

We denote the set of all factors of a sequence x by Fac(x), the set of all factors of length n
by Facy(x). Recall that subword complexity of a sequence z is a function p,: N — N such that
pz(n) = | Fac,(z)| (see [6] for a survey).

3 Algorithms on Infinite Words

Formally, we consider an algorithm with an oracle for a word on input. This algorithm halts on
every oracle and outputs a finite binary string or any other constructive object (for example, “yes”
or “no”). The main property of such an algorithm is continuity: it outputs the answer on having
read only finite number of symbols from the word. Thus to prove non-effectiveness we only need to
show discontinuity. In fact, such proofs are just concrete complicated combinatorial constructions
showing this discontinuity.

It is obligatory to remark that there is also another way to formalize the notion “algorithm on
infinite word”. Namely, one can consider classical algorithms without any oracle defined only on
totally computable words. Such an algorithm takes on input a program printing an infinite word
and outputs a finite string. However this approach leads to the same situation as in the case of
relativized algorithms: such algorithm also generates a continuous function on infinite words (e. g.,
see Theorem by Kreisel, Lacombe, Shoenfild in [18]).



If we have only a word, then we can not recognize almost any property about this word. For
example it is even impossible to understand whether the symbol 1 occurs in given binary word:
if an algorithm checks some finite number of symbols and all these symbols are 0, then it can
not guarantee that 1 does not occur further. The question about algorithmic decidability becomes
more interesting if we allow to give on input some additional information. In the case of generalized
almost periodic words almost periodicity regulator might be a good choice.

From this point of view the above problem can be solved effectively: reading first f(1) symbols
of the word we can say whether or not 1 occurs in it, and moreover reading next f(1) symbols we
can even say whether 1 occurs in it finitely or infinitely many times.

The following several theorems are examples of problems concerning almost periodicity that
can not be solved algorithmically.

We say f, — f for fn, f: N = Nif Vi In Vm > n f,(i) = f(3).

Theorem 1. Given © € EAP and its regulator f, it is impossible to compute algorithmically any
[ > pr(z).

To show the technics, let us prove this theorem.

Remind that 7 is the Thue-Morse word. This word can be obtained as follows: let a9 = 0,
ap+1 = anay for all n, and z7 = lim,_, a,. Notice that |a,| = 2". The Thue-Morse word has
lots of interesting properties (see [1]), but we are interested in the following one: zr is cube-free,
i. e., for any a € B*, a # A the string aaa does not occur in z7 (see [1, 24]).

Proof of Theorem 1. It is enough to construct =, € EAP, x € AP with regulators f,, f such that
Tn = 2, fn — f, but pr(z,) — oo. Indeed, suppose the mentioned algorithm exists and it outputs
some [ > 0 (arbitrary for x € AP) given (z, f) on the input. During the computation of [ the
algorithm reads only finite number of symbols in = and of values of f. Hence there exists N > [
such that algorithm does not know any z(k) or f(k) for kK > N. Since pr(z,) — oo, there exists n
such that pr(z,) > N. The algorithm works on the input (z,, f,) in the same way as it works on
the input (x, f), and then outputs [, but pr(z,) > N > I.

Let z = z7, ©, = apana,z. Notice that pr(z,) > 2". Indeed, if pr(z,) < 2", then ana,z =
O QpGnlnay, - - . € AP, and hence apa,a, occurs in z — contradiction with the statement before
the proof.

It only remains to show that we can find regulators f,, f for z,, x such that f, — f. It
is sufficient to find the same regulator g for all z, (then we can increase it and obtain the same
regulator for all z,, and for z too). Fix some R, and assume g = 4 - R,. Let v with |v| = k occur
in x,, = apanapx infinitely many times. Let us take the factor z[i, j] of length 4 - R, (k) and show
that v occurs in it. If j > 3 - 2" + Ry(k), then v occurs on the factor z[3 - 2",3 - 2" + Ry (k)]
(by definition of Ry). Otherwise j < 32" 4+ Rg(k), hence 7 < 3-2" — 3R(k). But i > 0,
therefore Ry (k) < 2" = |ay,|. Then z,[i,i + Ry(k)] is contained in apa,. But aya, occurs in x, so
Znli,i + Re (k)] occurs too. Therefore v occurs in z.

However g is not required yet. We should look at the strings occurring in z,, finitely many times.
Obviously, if some v occurs in z, finitely many times, then |v| = k > 2™ (otherwise v occurs in
two consecutive strings a, or @,, and thus in z). Therefore this can happen only for finite number
of different n. Considering all the situations when strings of length k£ occur in some z, finitely
many times, we probably increase the value g(k), but only finitely many times. Thus the required
estimation for regulators exists. O

We have already mentioned that EAP C GAP. It turns out that it is even impossible to
separate these classes effectively.



Theorem 2. Given © € GAP and its regulator f, it is impossible to determine algorithmically
whether x € EAP.

The following theorem shows that it is even impossible to separate effectively AP and P.

Theorem 3. Given © € AP and its regulator f, it is impossible to determine algorithmically
whether x € P.

By the argument of Theorem 3 we obtain that there exists an infinite set of periodic words with
common regulator. The example is interesting since the periods of these sequences are arbitrary
large. This construction can be used in the following result: after adding one symbol at the
beginning of an almost periodic word we can not check whether it is still almost periodic. Or in
other words,

Theorem 4. Given x € EAP, its requlator f and some | > pr(z), it is impossible to find algorith-
mically pr(z) precisely.

The following result is similar to the result of Theorem 3.

Theorem 5. Given © € AP and its regulator f, it is impossible to determine algorithmically
whether x is automatic. The same is with morphic.

The contrary problem of determining whether a given morphic word is almost periodic is still
open in general case. The particular case of automatic words or pure morphic words is solved
in [17, 14].

4 Monadic Theories

As we could see in the previous section, even in a sequence together with its regulator there is no
enough information about this sequence: some very natural characteristics can not be expressed.
However, if we restrict our expressibility power up to monadic second-order language, we will see
that an almost periodic sequence and its almost periodicity regulator are exactly what we need to
express everything that we can about this sequence (Theorem 6).

Generally, combinatorics on infinite words is closely connected with the theory of second order
monadic logics on natural numbers. Here we just want to show some examples of these connections.
More details can be found, e. g., in [21, 22, 23].

We consider monadic logics on N with the relation “<”, that is, first-order logics on natural
numbers with order where also unary finite-value function variables and quantifiers over them are
allowed. We also suppose that we know some fixed finite-value function z: N — ¥ and can use it
in our formulas. Such a theory is denoted by MT(N, <, z) and is called monadic theory of .

The main question here can be the question of decidability, that is, does there exist an algorithm
that given a sentence in a theory says whether this sentence is true of false.

Theorem 6 (Semenov 1983 [22]). If x is almost periodic, then MT(N, <,x) is decidable iff =
and some its almost periodicity regulator are computable.

It is curious that now using Theorem 6 we can obtain some corollaries from the results of
Section 3.

Corollary 7. There is no monadic formula ¢(x) over a word x that for x € EAP expresses some
[ > pr(z).



Corollary 8. There is no monadic formula ¢(x) over a word x that for x € GAP expresses the
property v € EAP.

Corollary 9. There is no monadic formula ¢(z) over a word x that for © € AP expresses the
property x € P.

Corollary 10. There is no monadic formula ¢(x,l) over a word x and a natural number [ that for
x € EAP and some | > pr(x) expresses the exact value pr(z).

Each of the corollaries shows some property to be inexpressible by a uniform formula in monadic
language for all z simultaneously. However, in each theory MT(N, <,z) the same property is
obviously expressible, independently of other theories. For example, Corollary 7 says that there is
no a unique formula ¢(z) that for z € EAP expresses some [ > pr(z). However, in each MT(N, <, z)
for x € EAP such [ is a constant natural number that can be expressed.

It seems interesting to continue research in this direction and to describe properties of sequences
that can be uniformly expressed in monadic language.

5 Kolmogorov Complexity

Kolmogorov complexity of a finite word is informally the amount of information in this word.
More formally, it is the length of the shortest binary description for this word, where the resulting
word is obtained from the description using some universal algorithmic decompression function,
for instance, universal Turing machine. In other words, Kolmogorov complexity of a word is the
length of the shortest program without input in some natural programming language that prints
this word. Kolmogorov complexity is defined up to an additive constant (depending on particular
universal machine that one considers). More details and formalities for this extremely important
and interesting notion can be found in [9] or [25]. We denote by K (u) the complexity of a word w.
In this section all finite and infinite words are supposed to be binary. Recall one of the simplest
properties of Kolmogorov complexity: K (u) < |u|+C for all u € B*, for every word can be described
at least by this word itself.

Although Kolmogorov complexity is used to measure the amount of information in words (as
well as other finite constructive objects), and therefore applications and connections of Kolmogorov
complexity to combinatorics on words might be of great interest and importance, it looks very
strange that almost nothing is done in this direction. Among recent works we can mention only
[19] (see discussion below) and [20] where new proof of existence of sequences with arbitrary critical
exponent is given (originally proved in [8]).

The aim of this section is to discuss the following (still open) problem raised by Andrej Much-
nik: does there exist an almost periodic sequence z with computable regulator such that all its
subwords have high Kolmogorov complexity, namely, K(u) > a|u| for some 0 < o < 1 and for all
subwords u of 7 Muchnik conjectured that such sequences exist for all o < 1. Properties of such
sequences should combine some computability (computable almost periodicity regulator) and some
randomness (almost maximal Kolmogorov complexity of subwords). However, such sequence is not
really computable, since it would imply logarithmic complexity of all prefixes. It is also not really
random (in Martin-Lof sense, this means having all prefixes of maximal Kolmogorov complexity),
since it would imply Fac(z) = B*, which is not the case for almost periodic sequences.

Many very close results were already obtained. Levin lemma says that for every « such that
0 < a < 1 there exists an infinite binary sequence z such that K(u) > «alu| for all factors u of z
(see [5] or [19]). Since for every sequence there exists an almost periodic one with factors that are
factors of initial sequence (minimality property), Levin lemma implies existence of almost periodic



sequence with above property. The problem now is to find such sequence with computable almost
periodicity regulator.

In fact, some weaker characteristic of almost periodic sequence can be made computable in this
situation. Let z be almost periodic. Let R/, (n) be some [ such that xz[0,n — 1] appears on each
segment of length [ in = (see also [3]). Obviously, for every z € AP if some R, is computable,
then some R/ (n) is also computable. As it can be seen after analyzing the paper [19], for every «,
0 < a < 1, there exists a binary sequence z such that K(u) > «|u| for all factors u of z, and such
that some R/, is computable. As the following theorem shows, the gap between this result and the
desired conjecture is significant.

Theorem 11. There exists an almost periodic sequence x such that R., is computable, but no its
almost periodicity regulator is computable.

A weaker version of Muchnik’s conjecture can be obtained if we consider not all factors, but
only all prefixes. After analyzing the arguments from [13] and changing some details, one can prove
that for every a, 0 < o < 1, there exists a binary sequence z such that K(u) > «|u| for all prefixes
u of z, and such that some its almost periodicity regulator is computable. The technics of [13] is a
possible way to prove Muchnik’s conjecture.

Very natural notion of subword complexity is often used to characterize infinite words. The
following lemmas describe some connections between Kolmogorov and subword complexity.

Lemma 12. For every n there exists C' such that for all m > n for all u € Facy,(z) we have
K(u) < 2 log(ps(n)) + C.

Lemma 13. For every n there ezists u € Fac,(x) such that K(u) > log(pz(n)).

Recall that limy, .+ = log(py(n)) always exists and is called topological entropy of a word (see [6]);
we denote it by Ei(z). This is a real number between 0 and 1 somehow describing how de-
terminant sequence is: the more close to 0 the number Fy(z) is, the more determinant a se-
quence x is. If one wants to define something similar in terms of Kolmogorov complexity, then
Ej(z) = limp_00 = max{K (u) : |u| € Fac,(z)} might be a good choice. From this definition it is
even not clear when Fj(z) exists, but from Lemmas 12 and 13 it follows that Ej(z) exists for all
x and is equal to Ey(x).

Another important corollary from Levin lemma and Lemma, 13 is that for every a, 0 < a < 1,
there exists an almost periodic sequence z with E;(z) > «. Moreover, such sequence can be made
with computable regulator, that follows from Lemma 13 applied to a sequence with prefixes of high
Kolmogorov complexity.

However, Muchnik’s conjecture in a general form is still open.

6 Conclusion

The notion of information in infinite sequence is of great interest. It seems that in all direc-
tions mentioned in this paper significant and interesting further results can be obtained (even if
this motivation about “information in infinite word” looks artificial, the problems look interesting
themselves). Probably the most important point is to establish connections of Kolmogorov com-
plexity and combinatorics on words and to find new applications from each of these two fields in
another one.

Another problem which is not mentioned in the main text of this paper in the most general
formulation is the following. Suppose we have a sequence and some transformation of this sequence.



When this transformation does not lose information from this sequence, i. e., the image has the
same information? In other words, when does there exist a transformation of the same type that
applied to image returns an initial sequence? In particular, consider transformations of the simplest
type, namely, morphisms. When for a sequence z and a morphism h does there exist a morphism
g such that g(h(z)) = z? Is the problem of existence of such morphism decidable? How many such
morphisms might be for a fixed sequence?
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