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Abstract—Different versions of the notion of almost-periodicity are natural generalizations of
the notion of periodicity. The notion of strict almost-periodicity appeared in symbolic dynam-
ics, but later proved to be fruitful in mathematical logic and the theory of algorithms as well.
In the paper, a class of essentially almost-periodic sequences (i.e., strictly almost-periodic
sequences with an arbitrary prefix added at the beginning) is considered. It is proved that
the property of essential almost-periodicity is preserved under finite-automaton transforma-
tions, as well as under the action of finite transducers. The class of essentially almost-periodic
sequences is contained in the class of almost-periodic sequences. It is proved that this inclusion
is strict.

Key words: strictly almost-periodic sequence, finite automaton, finite transducer.

1. INTRODUCTION

Strictly almost-periodic sequences (under a different name) were studied in the papers by Morse
and Hedlund [1], [2] as well as by several other authors. This notion emerged in symbolic dynamics,
but later proved to be fruitful both in mathematical logic and in the theory of algorithms.

The class of automaton images of strictly almost-periodic sequences (definitions are given below),
obviously, contains the class of essentially almost-periodic sequences, by which we mean strictly
almost-periodic sequences with an arbitrary prefix added at the beginning. Indeed, a sequence
aω can be obtained from a strictly almost periodic sequence ω by using what is called a finite
time-lagged automaton: its memory stores a finite word a, and during its operation, it puts out this
word first and then the input sequence with the time lag |a| (to this end, the automaton stores the
last |a| symbols of the sequence in its memory). The main result of the paper (Theorem 2) consists
in the fact that the two above-mentioned classes coincide. In other words, Theorem 2 claims that
the property of essential almost-periodicity is preserved under finite-automaton transformations.
In the last part of the paper, we consider an extension of the notion of a finite automaton, that of
a finite transducer, and prove a similar statement for it.

It is worth mentioning that an extension of the class of strictly almost periodic sequences,
that of almost-periodic sequences (see its definition below), was considered in [3]. In particular,
it was proved that this class is also closed under automaton transformations. Clearly, the class
of almost-periodic sequences contains the class of essentially strictly almost-periodic sequences. It
turns out that this inclusion is strict (Theorem 1).

Let A be a finite alphabet. We shall consider sequences over this alphabet, i.e., maps ω : N → A
(where N = {0, 1, 2, . . . }). Denote by A∗ the set of all strings over the alphabet A. If i and j, i ≤ j,
are natural numbers, then we denote by [i, j] the closed interval of the set of natural numbers with
endpoints i and j, i.e., the set {i, i + 1, i + 2, . . . , j}. Denote by ω[i, j] the corresponding interval
of the sequence ω, the string ω(i)ω(i + 1) . . . ω(j). We say that [i, j] is an occurrence of a string
x ∈ A∗ in the sequence ω, if ω[i, j] = x. Denote by |x| the length of the string x. We think of a
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sequence as written horizontally and extending from left to right infinitely; thus, speaking about
smaller and greater indices, we shall say “to the left” and “to the right,” respectively.

2. ALMOST-PERIODICITY

A sequence ω is called almost-periodic if for each string x that occurs in it infinitely many times,
there exists a positive integer l such that each interval of length l of the sequence ω contains an
occurrence of the string x.

A sequence ω is called strictly almost-periodic if for each string x that occurs in it at least once,
there exists a positive integer l such that each interval of length l of the sequence ω contains an
occurrence of the string x.

For convenience, let us introduce another definition. We shall say that a sequence ω is essentially
strictly almost-periodic if it is the concatenation of a finite string and a strictly almost periodic
sequence.

Each essentially strictly almost-periodic sequence is, obviously, almost periodic. Let us show
that the class of almost-periodic sequences is strictly wider than the class of essentially strictly
almost-periodic sequences.

Theorem 1. There exists an almost-periodic sequence over the alphabet {0, 1} which is not essen-
tially strictly almost-periodic.

Proof. Let us construct a chain of binary strings:

a0 = 1, a1 = 10011, a2 = 1001101100011001001110011,

and so on. The string an+1 is obtained from an by the following rule:

an+1 = ananananan,

where x denotes the string obtained from x by replacing all ones by zeros and all zeros by ones.
Set

cn = anan . . . an
︸ ︷︷ ︸

10

and consider the sequence
ω = c0c1c2c3 . . . .

Let us prove that this is the desired sequence.
The length of an is 5n; therefore, the length of the initial interval c0c1 . . . cn−1 of the sequence ω

is equal to

10(1 + 5 + · · · + 5n−1) =
5
2
(5n − 1).

For convenience, let

ln =
5
2
(5n − 1) = |c0c1 . . . cn−1|.

Let us show that ω is almost-periodic. Suppose that a nonempty string x occurs in ω infinitely
many times. Let us take a number n such that |x| < 5n. Let [i, j] be an occurrence of the string x
in ω such that i ≥ ln. It follows from the construction of ω that for each k, the part of this sequence
starting from the position lk can be viewed not only as the concatenation of symbols 0 and 1, but
also as the concatenation of the strings ak and ak. Therefore, by the choice of i, the string x is
a substring of one of the four strings anan, anan, anan, and anan. Notice that the string 10011
contains all the strings of length two (00, 01, 10, and 11). Therefore, the string an+1 contains
each of the strings anan, anan, anan, and anan. Hence x is a substring of an+1. Similarly, x is a
substring of an+1 (01100 also contains each of the strings 00, 01, 10, and 11). On each interval of
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length 2|an+1| to the right of the position ln+1, there is an occurrence of an+1 or an+1; therefore,
each interval of length l = 5

2
(5n+1 − 1) + 2 · 5n+1 includes an occurrence of the string x.

Now let us prove that for any positive integer n, the string cn does not occur in the sequence ω
to the right of the position ln+1. It follows that for the sequence obtained from ω by cutting off the
initial segment of a length not exceeding ln, there exists a string, namely, cn, which occurs in it a
nonzero finite number of times. This will mean that this sequence is not strictly almost-periodic,
and so ω is not an essentially strictly almost-periodic sequence.

Let ν be a sequence obtained from ω by cutting off the initial segment of length ln+1. As we
have already noticed, for each k, 1 ≤ k ≤ n + 1, it can be represented as the concatenation of
the strings ak and ak. Suppose that cn occurs in ν, and let [i, j] be one of its occurrences. For
n > 0, the string cn begins with a1; therefore, [i, i + 4] is an occurrence of a1 in ν. Notice that
wherever a1 = 10011 occurs in a1a1 = 1001110011, a1a1 = 1001101100, a1a1 = 0110010011,
or a1a1 = 0110001100, it starts only from the zeroth or fifth position. Therefore, 5 | i, i.e., the
beginning of the occurrence of the string cn in ν coincides with that of one of the strings a1 or a1,
which, as we can assume, constitute ν. Using induction on m, let us prove that 5m | i for 1 ≤ m ≤ n,
i.e., if we represent ν as the concatenation of the strings am and am, then the beginning of the
occurrence of cn coincides with the beginning of one of these strings. The base of induction (for
m = 1) has already been proved. Assuming that this statement is true for m = k, we can view ν
and cn as being composed of the “characters” ak and ak with cn occurring in ν. Then, to prove
the statement for m = k + 1, we can apply exactly the same argument as in the case m = 1, but
with 1 and 0 replaced by ak and ak, and a1 and a1 replaced by ak+1 and ak+1; in so doing, we can
use the fact that cn begins with ak+1.

Thus, we have shown that 5n | i; that is, if ν and cn are viewed as composed of the “characters”
an and an, then we have proved that

cn = anan . . . an
︸ ︷︷ ︸

10

occurs in ν. But each interval of the sequence ν consisting of 10 successive “characters” an and
an includes an occurrence of the “five-character” string an+1 or an+1, and this string contains an
occurrence of the “character” an. A contradiction. �

Moreover, we see from the proof how to construct an infinite, even a continuum, set of almost-
periodic sequences that are not essentially strictly almost-periodic. For instance, we can proceed
as follows: to each sequence τ : N → {9, 10}, we can assign a sequence constructed the same way
as ω from the proof of Theorem 1, but with the string

c(τ)
n = anan . . . an

︸ ︷︷ ︸

τ(n)

taken as cn. Clearly, the ωτ thus constructed will be different for different τ (for different τ1 and τ2,
it suffices to consider the smallest n at which they differ: then c

(τ1)
n and c

(τ2)
n will contain different

numbers of an, but they are followed in ωτ1 and ωτ2 by an+1 = ananananan). It remains to notice
that there are continually many different τ .

3. AUTOMATON TRANSFORMATIONS

A finite automaton is a quintuple F = 〈A,B,Q, q̃, f〉 consisting of finite sets A and B called
input and output alphabets, respectively; a finite set of states Q; a designated set q̃ ∈ Q called the
initial state; and a transition function

f : Q × A → Q × B.
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A sequence 〈pn, β(n)〉∞n=0, where pn ∈ Q, β(n) ∈ B, is called the automaton transformation of a
sequence α of characters from the alphabet A if p0 = q̃ and 〈pn+1, β(n)〉 = f(pn, α(n)) for each n.
The sequence β thus defined is denoted by F (α) and is called the result of the transformation of α
by the automaton F . Obviously, for each F and α, the result F (α) exists and is uniquely defined.
If [i, j] is an occurrence of a string x in the sequence α with pi = q, then we say that the automaton
F arrives at this occurrence of x in the state q.

In [3], the following statement was proved: if F is a finite automaton, and ω is an almost-periodic
sequence, then F (ω) is also almost periodic.

It turns out that this theorem can be supplemented.

Theorem 2. If F is a finite automaton and ω is an essentially almost-periodic sequence, then
F (ω) is also an essentially strictly almost-periodic sequence.

Proof. Clearly, it will suffice to prove the theorem for strictly almost periodic sequences ω, because
an essentially strictly almost periodic sequence (in our case, F (ω)) remains essentially strictly
almost-periodic after adding an arbitrary prefix to it.

Thus, let ω be a strictly almost-periodic sequence. By the theorem mentioned above, the sequence
F (ω) is almost-periodic. Suppose that it is not essentially strictly almost-periodic. This means that
for any positive integer N , there exists a string that occurs in F (ω) to the right of the position N
and does not occur after that any more. Indeed, by cutting off the initial interval [0, N ] from F (ω),
we shall not obtain a strictly almost-periodic sequence; therefore, there exists a string that occurs
in it a nonzero finite number of times. Then we take the rightmost occurrence of this string.

Let [i0, j0] be the rightmost occurrence of a certain string y0 in F (ω). For a certain positive
integer l0, the string x0 = ω[i0, j0] occurs in any interval of length l0 of the sequence ω (by strict
almost-periodicity of this sequence). Furthermore, if q0 is the state in which the automaton F
arrives at the position i0, then it cannot arrive at any subsequent occurrence of the string x0 in ω
in the state q0; otherwise it would put out the complete string y0.

Now let [r, s] be the rightmost occurrence of a certain string a in the sequence F (ω) with
r > i0 + l0. There is an occurrence [r′, s′] of the string x0 on the interval ω[r − l0, r], for which, by
the choice of r, we have r′ > i0. Then we set

i1 = r′, j1 = s, x1 = ω[i1, j1], y1 = F (ω)[i1, j1].

Since a does not occur in F (ω) to the right of the position r, the string y1 that contains a as
a substring, does not occur in F (ω) to the right of the position i1. This means that if q1 is the
state in which the automaton arrives at the position i1, then the automaton will never arrive
at the occurrence of the string x1 in ω in the state q1 after that. Since x1 begins with the string
ω[r′, s′] = x0 and r′ > i0, we have q1 �= q0. Thus, we have found a string x1 such that the automaton
cannot arrive at any of its occurrences to the right of i1 in the states q0 or q1.

Let m = |Q| be the number of the automaton’s states. Proceeding inductively along the same
lines, we construct a chain of strings xk = ω[ik, jk] and the corresponding distinct states qk, where
k < m, such that the automaton cannot arrive at any of the occurrences of xk in ω to the right of
ik in the states q0, q1, . . . , qk. For k = m, we obtain a contradiction. �

4. FINITE TRANSDUCERS

Let A and B be finite alphabets. A map h : A∗ → B∗ is called a homomorphism if for any
u, v ∈ A∗ we have h(uv) = h(u)h(v). Clearly, any homomorphism is completely defined by its
values on single-character strings. If ω is a sequence of characters of the alphabet A, we set by
definition

h(ω) = h(ω(0))h(ω(1))h(ω(2)) . . . .

Let h : A∗ → B∗ be a homomorphism, and let ω be an almost-periodic sequence over the alphabet A.
In [3], it was shown that the sequence h(ω) will also be almost-periodic. Then it is clear that if
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ω is strictly almost-periodic, then h(ω) will also be strictly almost-periodic. Indeed, it suffices to
prove that for any string u = ω[i, j], the string h(u) = h(ω(i)) . . . h(ω(j)) occurs in h(ω) infinitely
many times. But this follows from the definition of h(ω) and from the fact that ω is strictly
almost-periodic, which means that the string u occurs in it infinitely many times. Obviously, if ω
is essentially almost-periodic, then h(ω) is also essentially almost-periodic.

A natural extension of the notion of finite automaton is that of a finite transducer (for more
details, see [3], [4]). The difference is in that a finite transducer can produce a string of an arbi-
trary length having read one input symbol. Formally, only the definition of the transition function
changes: now it is of the form f : Q × A → Q × B∗. If a sequence 〈pn, vn〉∞n=0, where pn ∈ Q,
vn ∈ B∗, is a transformation of a sequence α, then the result of the transformation is the sequence
v0v1v2 . . . .

The action of a finite transducer can be represented as the composition of an automaton trans-
formation and a homomorphism. Each of these types of transformations, as we know, preserves
the property of almost-periodicity; thus, we obtain a corollary: almost-periodic sequences remain
almost periodic under the action of finite transducers. Similarly, it follows from Theorem 2 and the
preservation of essential strict almost periodicity under homomorphic maps that finite transducers
also preserve the property of essential almost-periodicity.
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